The ability of tree stems to intercept debris flows in forested fan areas: A laboratory modelling study

Submitted: 3 May 2017
Accepted: 21 October 2017
Published: 5 April 2018
Abstract Views: 971
PDF: 774
HTML: 132
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Debris flows are one of the most common geomorphic processes in steep mountainous areas. The control of their propagation on alluvial fans is fundamental; valley bottoms are usually characterised by high damage potential because they contain concentrations of inhabitants and infrastructure. It is well known that forests have a protective function in that they reduce the triggering of debris flows, as well as hinder their motion and promote deposition, but a quantitative assessment of these effects is still lacking. Using laboratory experiments that simulate debris-flow depositional processes, this research investigated the ability of forests to reduce debris-flow runout and depositional area. The experiments considered two different forest types, high forests and coppice forests, and four volumetric concentrations of sediment (0.50, 0.55, 0.60, and 0.65). The results confirmed that the sediment concentration of the flow is a key factor in determining the geometry of the deposits. On the other hand, forests can reduce debris-flow runout distance and, in general terms, affect the characteristics of their deposits. The results showed that vegetation appear to reduce debris-flow motion especially when the debris-flow kinematic load at the fan apex is low. About the sediment concentration of the mixture, high forest did not exhibit a clear behaviour while coppice forest appears to promote significant deposition at all of the tested concentrations, and this effect increases with the solid concentration (reductions in runout between approximately 20% and 30% at CV=0.50 and CV=0.65, respectively, were observed). Due to their higher tree density, in fact, coppice forests seem to have a better protective effect than the rigid trunks of high forest trees. For this last type of forest, a relationship between the H/L ratio, which represents energy dissipation, have been found and compared with the scenario without forest.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Supporting Agencies

Università degli Studi di Padova, MIUR,

How to Cite

Bettella, F., Michelini, T., D’Agostino, V. and Bischetti, G. B. (2018) “The ability of tree stems to intercept debris flows in forested fan areas: A laboratory modelling study”, Journal of Agricultural Engineering, 49(1), pp. 42–51. doi: 10.4081/jae.2018.712.