
Abstract
The assessment of the photosynthetic pigment contents in

plants is a common procedure in agricultural studies and can
describe plant conditions, such as their nutritional status, response
to environmental changes, senescence, disease status and so forth.
In this report, we show how the photosynthetic pigment contents
in plant leaves can be predicted non-destructively and in real-time
with an artificial intelligence approach. Using a convolutional
neural network (CNN) model that was embedded in an Android-
based mobile application, a digital image of a leaf was processed
to predict the three main photosynthetic pigment contents: chloro-
phyll, carotenoid and anthocyanin. The data representation, low
sample size handling and developmental strategies of the best
CNN model are discussed in this report. Our CNN model, photo-
synthetic pigment prediction network (P3Net), could accurately
predict the chlorophyll, carotenoid and anthocyanin contents
simultaneously. The prediction error for anthocyanin was ±2.93
mg/g (in the range of 0-345.45 mg/g), that for carotenoid was ±2.14
mg/g (in the range of 0-211.30 mg/g) and that for chlorophyll was
±5.75 mg/g (in the range of 0-892.25 mg/g). This is a promising
result as a baseline for the future development of IoT smart
devices in precision agriculture.

Introduction
Photosynthetic pigments are the most easily observable deter-

minant and diagnostic tool of plant performance during different
phases of development. For example, the loss of green pigment
colour can also be used to monitor leaf senescence, which is cor-
related with plant responses to internal and external changes
(Esteban et al., 2015). The development of an efficient method to
quantify the changes in plant pigment composition, especially
based on a non-destructive approach (Croft and Chen, 2017), has
become a topic of paramount interest in current agricultural stud-
ies. The spectral reflectance data from a spectrophotometer-based
measurement have been intensively used for non-destructive pig-
ment quantification of an intact leaf (Gitelson and Solovchenko,
2017, 2018). Unfortunately, spectral reflectance data cannot be
easily generated and is also costly. With the recent development of
computer technology, digital imaging combined with artificial
intelligence has been extensively applied in the development of
non-destructive plant evaluation methods. Those methods are
proven to be efficient and quite accurate and can be used for real-
time analysis (Inácio and Rieder, 2018). 

The artificial neural network (ANN), which is a well-known
method in artificial intelligence, has been used in agricultural
studies to conduct plant evaluations. Using digital images as input,
the ANN has been used to estimate leaf areas, identify disease
symptoms, predict yields, classify varieties, and predict leaf
chlorophyll contents (Gallego et al., 2011). The main challenge,
however, is the feature extraction task. Prior to the learning pro-
cess, the most significant features of the digital image must be
determined. The features will be the input of the ANN architec-
ture. Here, human knowledge and creativity become the primary
determinants to define the best features to ensure the best perfor-
mance of the ANN. The convolutional neural network (CNN)
method was invented to address this situation so that the feature
extraction process from digital image data can be automatically
performed. To improve the CNN performance, LeCun et al.
(1998) implemented backpropagation (a supervised learning algo-
rithm), which allowed the CNN to provide good results for the
first time. In the following years, the CNN performance was fur-
ther improved. By adding the rectified linear unit (ReLU) and the
dropout concepts, developed AlexNet, which succeeded in classi-
fying the Imagenet data into one of 1000 classes. Due to all of its
advantages, the applications of the CNN in agricultural research
have rapidly increased (Kamilaris and Prenafeta-Boldú, 2018).

The CNN input consists of the digital images, which are pro-
cessed using digital image processing methods. Therefore, no fea-
ture extraction processes are needed on the original image, unlike
in the case of the ANN. Those features will be extracted in the
convolution layer through a constructive random process. The
convolutional term in the CNN refers to the convolution technique
in morphological image processing. By using a kernel, the convo-
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lution allows us to manipulate morphologically digital images
using techniques such as edge detection, blurring, sharpening, and
embossing. These improve the efficiency of the forward process in
the CNN and diminish the total number of the parameters used in
the network. This is also the reason why the CNN is known to be
superior in performing object classifications and even object
recognition on digital images. In general, CNN-based projects in
agricultural studies focus mainly on the object shape during the
classification or recognition task (Kamilaris and Prenafeta-Boldú,
2018). In our research, the colour was the main parameter that was
considered to quantify the photosynthetic pigment contents in
plants. Previously, it was shown that the CNN could properly learn
plant digital images based on their colours, also in tasks such as
species classification (Ghazi et al., 2017), phenotyping (Ubbens
and Stavness, 2017), and disease detection (Mohanty et al., 2016).
However, colour as the main feature and its correlation with the
pigment composition in plant leaves has not been intensively stud-
ied in CNNs. Nevertheless, since Gitelson and Merzlyak (2004)
showed that the intact leaf reflectance at a certain electromagnetic
wavelength has a strong correlation with its photosynthetic pig-
ment content, we hypothesized that the CNN model could also per-
form well in determining the nonlinear relationship between
colours in leaf images and their photosynthetic pigment contents. 

The main objective of our research was to develop an intelli-
gent system for predicting plant photosynthetic pigment contents
from leaf images. We focused on the implementation of the CNN
method to create a model that describes the relationship between
the image of a plant leaf and the contents of its main photosynthet-
ic pigments (chlorophyll, carotenoid, and anthocyanin). For the
ease of in situ assessment, the model was embedded into a smart-
phone via an android-based application. We evaluated the perfor-
mance of the application related to the colour constancy problem,
which in general is one of important issues to be considered in the
implementation of the digital imaging method. Furthermore, we
also evaluated the performance of the application across species.
Herewith, we report a novel study on the use of digital images as
an alternative to the spectrophotometer-based spectral reflectance
data of an intact leaf for performing its photosynthetic pigment
quantification. 

Materials and methods

Leaf samples 
In this research work, we used four species of Indonesian herbal

plants, i.e., Syzigium oleana, Piper betle, Jasminum and
Graptophyllum pictum. The plants were selected to represent a vari-
ety of photosynthetic pigment contents in leaves. Syzigium oleana
contained high concentrations of carotenoid and anthocyanin
(Anggraini, 2017). Graptophyllum pictum contained high concentra-
tion of anthocyanin and chlorophyll (Rosmala et al., 2016).
Jasminum contained high concentrations of chlorophyll and
carotenoid (Sabharwal et al., 2013). Piper betle was selected to sup-
port the supplementary data because of its unique variations in its
carotenoid, chlorophyll and anthocyanin contents (Preethy, 2014).
To prepare the samples, each leaf was carefully selected based on its
visual colour, health, and position from the terminal bud. We ensured
that each leaf visual colour represented the colour diversity within
the plant. The leaves must be healthy, should not look wilted or dry
and have no signs of any pest attacks. The leaf samples should be
taken from those located no more than five leaves below the terminal

buds. The data collection was carried out as follows: first, a digital
image was taken of each leaf, and then, an organic solvent was
applied to extract the necessary contents to measure the pigment
concentrations using a spectrophotometer. Each detailed step will be
described further in the following subsections. We measured a total
of 212 leaf samples (Syzigium oleana = 62, Graptophyllum pictum =
51, Jasminum = 55, and Piper betle = 44) that were collected from
several areas in Malang city, East Java, Indonesia. Those data sam-
ples were used to train the CNN model in describing the relation-
ships between a leaf image and its photosynthetic pigment contents.

Leaf images
For the benefit of the CNN model development, the environ-

ment during the image acquisition was controlled. The leaf images
were taken indoors and the illumination inside the room was stable
at 1240 lux. A smartphone digital camera (13 MP, f/2.2, Sony IMX
519 CMOS sensor, VIVO Y83, 2018) was used to take the leaf
images. All images were captured with the flash turned off and
with the auto-mode turned on. They were saved as .jpeg files. 

The CMOS sensor on most smartphone cameras captures
object reflectance in the red (590-720 nm), green (480-600 nm),
and blue (400-540 nm) range with the help of a Bayer filter.
Millions of other colours are generated with a demosaicing algo-
rithm. Meanwhile, chlorophyll reflects green light in the range of
500-650 nm, carotenoid reflects yellow-red light in the range of
500-760 nm and anthocyanin reflects red light around 700 nm.
Therefore, the leaf reflectance quantification by the green and red
filters of the camera sensor will greatly determine the accuracy of
the photosynthetic pigment content quantification. 

To facilitate the collection of the images of the leaf samples, a
simple Android-based application was also built. The application
enabled us to estimate the proper camera-object distance with a
virtual frame, because the entire area of each leaf analysed must
fall within the frame. This makes it possible to ensure that the cam-
era-object distance is always stable, when pictures are taken.
Moreover, a white sheet of HVS paper is needed as a calibration
aid. With the help of the thresholding algorithm, the application
took the colour from the white paper and then used it to correct the
brightness of the image. It is assumed that the maximum intensity
for each RGB component of the white paper is 255. Therefore, in
so doing, one can be sure that the brightness of the images is stable
for all pictures. 

Laboratory analysis
Each leaf was cut into two parts of equal size. One part was

prepared for the chlorophyll and carotenoid quantification, while
the other part was for the anthocyanin quantification. Each part of
the leaf was cut further into small pieces. To extract the pigments,
1.50 mL of organic solvent was added to the leaf materials (0.05 g)
along with CaCO3 and sodium ascorbate powder to prevent the
degradation of the pigments due to oxidation. Acetone (p.a.) was
used for chlorophyll and carotenoid extraction. For anthocyanin
extraction, we used a mixture of MeOH:HCl:H2O (90:1:1, v/v).
The leaf materials were then ground and evenly mixed using a vor-
tex for 1 minute, and then were incubated in ice for one minute.
The procedure was repeated 3 times until complete discolouration
of the leaf material. Next, the sample was centrifuged at 14,000
rpm for 2 min. The supernatant containing the pigment extract was
separated from the pellet and then was kept in ice for further mea-
surements. The absorption spectrum was measured using a UV-vis
spectrophotometer (Shimadzu UV-1800 Double Beam UV/Visible
Scanning, Shimadzu-Japan). The chlorophyll and carotenoid con-
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centrations were calculated using Lichtentaler’s equations
(Lichtenthaler, 1987). For the calculation of the anthocyanin con-
centration, we used the method that was published by Sims and
Gamon (2002). Table 1 shows the statistical summary of calculated
pigment contents for each plant species. A large standard deviation
indicated that the necessary diversity of the pigment content data
to train the CNN was achieved. 

Model development
Each leaf image is used as input and includes three pigment

content values (anthocyanin, carotenoid, and chlorophyll) as the
target output. The data were divided into two parts, i.e., the training
set and the validation set. The data were randomly separated into
these sets during the training process, with 80% for the training set
and 20% for the validation set. The training set was used to build
the CNN models, while the validation set was used to evaluate the
model performance in predicting the new data. To speed up the
training process, we applied data normalization prior to the train-
ing process (Equation 1), where z is the normalized data and x is
the raw data. Therefore, z will be in the range of 0 to 1.

                                                                                                

                                                  
(1)

The basic architecture of a simple CNN consists of convolu-
tion layers (with or without max pooling) and fully-connected lay-
ers. The number of convolution layers and fully-connected layers
was changed to obtain the best model. We evaluated four CNN
models (Table 2). Three of them were modified from a well-
known CNN architecture, i.e., LeNet (LeCun et al., 1998),
AlexNet (Krizhevsky et al., 2012) and VGGNet (Simonyan and
Zisserman, 2015). The photosynthetic pigment prediction net-
work (P3Net) was our original CNN model. Our purpose was to
develop an intelligent system for a prediction task, not a classifi-
cation task. Therefore, LeNet, AlexNet, and VGGNet, which were
initially used for classification problems, should be modified. The
modification of those three models was mainly in the output layer.
In the classification problems, the output nodes represent the
classes. In our pigment content prediction problem, each output
node would represent the predicted anthocyanin, carotenoid, and
chlorophyll contents. Especially for VGGNet, the number of hid-
den layers was also modified. The original sixteen hidden layers
were reduced to nine hidden layers (VGG-9). We reduced them
prior to overfitting occurring as a result of the low sample size
data. In the presence of this deficiency, the parameters that are
involved in the model cannot be too large (Truong et al., 2018).
However, our experiment showed that, although the complexity of
the model was low, overfitting still occurred. Therefore, several
methods to eliminate overfitting were implemented, including

regularization, dropout, and data augmentation.
We used the LeakyReLU as the activation function in the out-

put nodes. The LeakyReLU formula is shown in Equation 2, where
h(i) is the hidden unit activation, w(i) is the weight vector for the ith
hidden unit and x is the input.

                         
(2)

Seven gradient descent-based optimization methods were
compared to train the CNN models, including the stochastic gradi-
ent descent (SGD), adaptive gradient (Adagrad), adaptive delta
(Adadelta), root mean square propagation (RMSProp), adaptive
momentum (Adam), adaptive max pooling (Adamax), and nes-
terov adaptive momentum (Nadam). For all the methods, the mean
squared error (MSE) was used as the loss function. The MSE was
calculated using Equation 3, where yi was the actual pigment con-
tent, was the predicted pigment content and  was the sample
size. We conducted our evaluation prior to acquiring the CNN
model that best fitted the data and had the lowest complexity in
order to provide a high predictive performance.

                                                       
(3)

Software development
We developed the CNN model using Python 2 and Keras API

with the TensorFlow backend. The CNN experiment was run using
Google Colaboratory on a personal computer with a 1.60 GHz
Intel Core i5 processor, 8 GB of DDR 3 RAM, and the Sierra oper-
ating system. The best CNN model was saved in an HDF5 file. The
file was then embedded into the Android application using Android
Studio. 

Performance indicators
To simplify the interpretation, the mean absolute error (MAE)

was used to evaluate the performance of the CNN model to predict
the actual content of the photosynthetic pigments in the leaf being
analysed. It was also used to evaluate the performance of the
Android application in particular conditions to justify its reliability.
Equation 4 shows the MAE formula, where yi is the actual pigment
content, is the predicted pigment content and  is the sample
size.

                                                       
(4)

                             Article

Table 1. Statistical summary of the laboratory analysis.

Variety                                   ∑        Anthocyanin                 Carotenoid                Chlorophyll
                                         samples      (µg/g)*                      (µg/g)*                  (µg/g)*
                                                                         Mean            St.Dev.                       Mean             St.Dev.                   Mean              St.Dev.

Syzigium oleana                              62                               59.45                    73.33                                   31.97                     32.84                             124.21                    147.95
Piper betle                                         44                                4.58                      6.61                                     8.94                       9.92                               30.48                       37.23
Jasminum                                          55                                0.00                      0.00                                    44.24                     39.29                             306.57                    171.83
Graptophyllum pictum                   51                               47.32                    67.32                                   26.58                     26.08                             169.75                    161.54
*Pigment content relative to the dry weight of the leaf material. St.Dev., standard deviation.
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Results and discussion

Convolutional neural network model
The evaluation of the performance of the CNN models

includes 3 main aspects regarding the critical success factors in
developing the best model, i.e., i) data representation; ii) low sam-
ple size handling; and iii) model complexity.

Data representation
In this research, colour is the main feature that the CNN model

must learn. Therefore, different lighting conditions that result in
colour constancy problems for the input images must be taken into
consideration. In addition to applying the calibration procedure
using a white sheet of paper, we also consider the use of certain
types of colour models. We compared three colour models to deter-
mine the best one for overcoming colour constancy problems,
including the RGB, HSV, and LAB models. The RGB colour
model is the standard format for a smartphone camera. However, it
is known that RGB cannot guarantee colour constancy. Indeed, the
colour component (R, G, and B) values are produced by the same
object. However, the reflected colour images that are captured by
a camera in different lighting conditions are not identical. Unlike
RGB, the HSV model allows us to separate the object colour from
the surrounding environment illumination. Therefore, the HSV
concept is considered to be similar to how humans see colours. We
hypothesized that the application of the HSV colour model might
improve the prediction accuracy. Similar to the HSV, the LAB
model also separates colour components based on the illumination.
The LAB model is often used as a standard in calorimetry. Other
than the colour constancy problem, the issue regarding the region
of interest (ROI) of the input image was also investigated. We eval-
uated two forms of leaf visualization. The first form visualized
both the leaf and the background. The second one visualized only
the leaf area. We compared those two visualizations given that the
CNN model in this study was trained to recognize colours, and we
assumed that the exclusion of the background might increase the

accuracy. We found that the CNN models with the HSV and LAB
inputs produced smaller MAEs, when using the full leaf area with
the background visualization. On the other hand, the CNN model
with the RGB input provided the opposite result. Among the three-
colour model, the LAB performed better predictions. It produced
the smallest validation MAE (0.01253) and also did not overfit like
the other two-colour models. It was confirmed that the colour
model differences in the input images affected the CNN perfor-
mance. In general, the HSV model provided the largest MAE,
while the RGB and LAB models provided smaller, similar MAEs.
Nevertheless, the RGB model was difficult to train and it always
overfitted. On the contrary, the LAB model never overfitted. Given
that the absence of overfitting is an indication of a successful min-
imization of the generalization errors of the future output, we con-
cluded that the LAB was the best colour model to be applied to the
input image of the CNN models. Moreover, the LAB is a device
independent colour model, which gave us the chance to convey
assorted colours crosswise over the various gadgets. 

Low sample size handling
The laboratory procedures to measure the pigment contents

were costly and time-consuming. This was a limit in the choice of
the sample sizes. Therefore, unlike other CNN studies, the biggest
challenge to train the CNN models used in this research was the
low sample size data. Although many researchers argue that the
CNN can only obtain superior performance, if trained with a large
dataset, other researchers proved that the CNN can be trained with
a low sample size data and still obtain superior performance
(Keshari et al., 2018). Due to this scientific evidence, we believe
that we will be able to find a particular CNN model that can be
trained appropriately, using our dataset. However, low sample size
data resulted in severe overfitting problems in the training process
of the CNN model. Overfitting is a condition where the model is
too fit with the training data so that it cannot provide proper pre-
dictions for the validation data. Therefore, it was necessary to
implement overfitting removal methods, such as regularization,
dropout, and image augmentation (Wang and Perez, 2017). Our
experiment showed that regularization and dropout were not sig-

                             Article

Table 2. Convolutional neural network architectures used in the experiment.

Layer                                                 LeNet                         P3Net                                               Alexnet                                     VGG-9
Input                                               54×54×3                   54×54×3                                         120×120×3                             120×120×3

Convolution                       1                 6 filters of size 5×5       32 filters of size 3×3                                   96 filters of size 11×11                      64 filters of size 5×5
                                                                  with max pooling                                                                                        with max pooling                                              
                                             2                16 filters of size 5×5      32 filters of size 3×3                                    256 filters of size 5×5                       64 filters of size 3×3
                                                                  with max pooling             with max pooling                                           with max pooling                              with max pooling
                                             3                                  -                         32 filters of size 3×3                                   384 filters of size 3×3                      128 filters of size 3×3
                                                                                                               with max pooling                                           with max pooling                                              
                                             4                                  -                                           -                                                      384 filters of size 3×3                      128 filters of size 3×3 
                                                                                                                                                                                                                                                        with max pooling
                                             5                                  -                                           -                                                      256 filters of size 3×3                      256 filters of size 3×3
                                             6                                  -                                           -                                                                          -                                          256 filters of size 3×3
                                             7                                  -                                           -                                                                          -                                          256 filters of size 3×3 
                                                                                                                                                                                                                                                        with max pooling
Fully Connected               1                   120 nodes, ReLU              500 nodes, ReLU                                           4096 nodes, ReLU                             4096 nodes, ReLU
                                             2                    85 nodes, ReLU               500 nodes, ReLU                                           4096 nodes, ReLU                             4096 nodes, ReLU
                                             3                                  -                             500 nodes, ReLU                                                           -                                                             -
Output                                                             3 nodes,                            3 nodes,                                                           3 nodes,                                              3 nodes, 
                                                                       LeakyReLU                        LeakyReLU                                                      LeakyReLU                                          LeakyReLU
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nificantly effective in removing overfitting. Conversely, hand
image augmentation proved to be very effective in removing over-
fitting. Figure 1 depicts the MAE comparison of the training and
validation processes of P3Net model with the implementation of
regularization, dropout, and image augmentation. As can be seen in
Figure 1D, the overfitting disappeared after the application of
image augmentation. Therefore, in the end, image augmentation
was used to overcome the overfitting problem. 

We compared four augmentation techniques, including random
rotation, zooming, feature-wise centring, and feature-wise stan-
dard deviation normalization. Random rotation and zooming did
not change the values of L, A and B from the input image, because
the changes that occurred were spatial changes. Feature-wise cen-
tring and feature-wise standard deviation normalization produced
variations in the values of L, A and B from the input image. The
centring process altered the averages of the L, A, and B values of
all training data to zero. Meanwhile, standard deviation normaliza-
tion divided the L, A, and B values according to the standard devi-
ation of the entire training data. When centring and standard devi-
ation normalization were combined, the standardized image could
be formed. We found that the implementation of multiple methods
was better in removing overfitting compared to implementing a
single augmentation method. However, the intensity-based aug-
mentations (feature-wise centring and feature-wise standard devi-
ation normalization) led to more severe overfitting than in the case
of spatial-based augmentation (random rotation and zooming).

Therefore, intensity-based augmentation was not applied in our
next experiments. The application of the spatial-based augmenta-
tion technique (rotation and zooming) provided a 19% reduction of
the MAEs and also eliminated overfitting better than the applica-
tion of a single technique.

Model complexity
The four architectures that we present in this report were care-

fully chosen to represent the complexity of the network. The sim-
plest is the LeNet architecture, while the others are the P3Net, the
AlexNet and the VGG-9 architectures. All architectures were
trained using a batch size of 100 and 1000 epochs. For each archi-
tecture, the training process was conducted 10 times. The average
MAE was calculated for the performance analysis. The training
MAEs of all architectures were found to be slightly better than
their validation MAEs, which are reasonable and do not indicate
any overfitting. It can be concluded that the implementation of the
spatial-based data augmentation method worked well in preventing
overfitting not only in the P3Net architecture, but also in the other
three architectures. Moreover, we found that the performance of
CNN was influenced by the selected optimization method.
Experiments in all architectures showed that the newer variant of
the gradient descent optimization method provided better MAEs.
The SGD appeared to provide the largest MAEs for all CNN archi-
tectures. Nadam provided the smallest MAEs for LeNet (training
MAE of 0.01759±0.00216 and validation MAE of

                             Article

Figure 1. Comparison of the training and validation mean absolute errors (MAEs) of the P3Net using overfitting removal methods; A)
L1 regularization; B) L2 regularization; C) dropout; D) image augmentation.
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0.03851±0.00543), while Adamax provided the smallest MAEs for
P3Net (training MAE of 0.00624±0.00071 and validation MAE of
0.01249±0.00219), AlexNet (training MAE of 0.00584±0.00117
and validation MAE of 0.01204±0.00187) and VGG-9 (training
MAE of 0.00867±0.00419 and validation MAE of
0.01888±0.00443). After applying the best optimization method,
we compared the performance of all four architectures with regard
to the network complexity and its trained model file size (Figure
2). The CNN architecture in our experiment provided quite differ-
ent results from several prior studies. Cruz et al. (2019) and Too et
al. (2018) applied several CNN architectures for plant disease.

Their studies showed that by increasing the complexity of the
network, the accuracy of the system increased, and vice-versa. In
our experiment, an increased number of hidden layers did not nec-
essarily result in a significant reduction in MAEs. The P3Net,
which has a less complex architecture than AlexNet and VGG-9,
proved to provide an equivalent MAE. This is a promising result,
because the P3Net architecture ensures an easy implementation of
the model in mobile device applications, since its file size (9.40
Mb) is very much smaller compared to AlexNet (442.90 Mb) and
VGG-9 (335.70 Mb). However, as with most other studies, CNN
architectures that are too low in complexity (LeNet) cannot
promise good results. To further describe the performance of
P3Net, we compared the validation MAEs for the prediction of
each photosynthetic pigment. It was found that P3Net performance
was not the same in predicting the content of each photosynthetic
pigment. Out of the three pigments, anthocyanin provided the
smallest MAE (0.00578) and the lowest standard deviation, while
chlorophyll and carotenoid showed the opposite result
(carotenoid’s MAE =0.00899, chlorophyll’s MAE =0.02344).
Therefore, it seemed that anthocyanin was easier to learn for the
P3Net. We observed that the behaviour was in line with the results

presented by Huang et al. (2014), i.e. the higher the anthocyanin
content in leaves, the greater the prediction error of the chlorophyll
content. Therefore, since 53% of our leaf samples contained antho-
cyanin, we obtained a large MAE for the chlorophyll content pre-
diction. Therefore, this phenomenon can be explained as follows.
In spectral based pigment prediction methods (data acquisition
with spectrophotometers), the main reflectance of chlorophyll and
anthocyanin was known to be in the green range. Therefore, the
anthocyanin reflectance in the green range made the reflectance of
the chlorophyll in the same range difficult to measure. Gitelson et
al. (2001) experimented on several maple leaves with relatively
similar chlorophyll contents, but different anthocyanin contents.
The experimental results showed that a higher anthocyanin content
led to lower reflectance in the green range. One of the quantitative
examples that they presented is the reflectance comparison of the
two maple leaves that both had chlorophyll contents of ±9.50
nmol/cm2, where the first leaf contained <0.30 nmol/cm2 of antho-
cyanin and the second leaf contained <22.90 nmol/cm2 of antho-
cyanin. It was found that the first leaf reflectance was 23%, while
the second leaf reflectance dramatically dropped to 7%. Even in
dark-green leaves with high chlorophyll contents, a small amount
of anthocyanin (±3 nmol cm2) can significantly decrease the
reflectance in the green range. Hence, the development of spectral-
based non-destructive methods (especially those using the green
spectral range) for the prediction of the chlorophyll content
became more difficult for anthocyanin-containing leaves. Further
research will be conducted to find the right technique to reduce the
anthocyanin reflectance and predict the chlorophyll content.
Huang et al. (2014) formulated a spectral-based index, which was
claimed to be able to accurately measure the chlorophyll content in
leaves with various anthocyanin levels. However, its application to
digital leaf images has never been studied so far.
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Figure 2. Validation mean absolute error (MAE) comparison for each convolutional neural network model along with its file size. The
files were in the HDF5 format.
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The mobile application (Leaf Piction) 
Figure 3 illustrates the overall design of our plant photosyn-

thetic pigment assessment system, which worked as follows. The
user would take a photo of the plant leaf with a sheet of white
paper as the background. The calibration process as described in
the previous subsection was done automatically, when the camera
sensor captured an object. The leaf image was sent as the input to
the CNN model (P3Net) embedded in the Android application
named Leaf Piction. The P3Net predicted the pigment contents and
the results were displayed live on the smartphone screen. The pre-
diction of the three photosynthetic pigment content could be seen
at the bottom of the leaf image. If the user wanted to save the pre-
diction result, he could press the save button and the data would be
stored on the smartphone internal memory. 

To evaluate Leaf Piction performance in relation to the colour

constancy problem, we observed changes in the content of the pre-
dicted pigments due to differences in the environment illuminance,
when the leaf image was taken. We conducted a total of 128 indoor
and outdoor experiments with 4 different illuminance categories,
i.e. low (30-60 lux), medium (100-700 lux), high (1000-2500 lux),
very high (3000-6000 lux). We found that the calibration procedure
using a sheet of white paper significantly reduced the problem.
Figure 4 shows the difference in the average MAE with and with-
out the calibration procedure. It appears that the use of the calibra-
tion procedure can reduce the average MAE by 61.48% in the out-
door experiments and 49.55% in the indoor experiments. Outdoor
assessments have a greater potential to produce less accurate data.
Despite the calibration procedure, the average MAE of the outdoor
assessments was still greater than the average MAE of indoor
assessments. We investigated the outdoor illuminance level in

                             Article

Figure 3. Real-time plant photosynthetic pigment assessment system using a mobile application. Left to right, image acquisition, Leaf
Piction user interface, and the P3Net architecture for the prediction model. The whole leaf area under observation should fall within
the virtual frame of the application, i.e. the green rectangle on the smartphone screen.

Figure 4. Performance evaluation of Leaf Piction with and without calibration procedure; A) outdoor-indoor experiment; B) experiment
with 4 different levels of outdoor illuminance.
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greater depth and found that without a calibration procedure the
better the illuminance, the better the prediction accuracy (smaller
MAE). In the condition with the calibration procedure, regardless
of the illuminance level, the prediction accuracy tended to be the
same (relatively equal MAE).

We also tested Leaf Piction robustness across species. We
added a total of 27 leaf samples from 3 different species, i.e.,
Cananga odorata, Annona muricata, and Duranta erecta. In the
first experiment, we observed the behaviour of P3Net that was
trained with G. pictum, Jasminum, P. betle, and S. oleana in pro-
viding predictions for the C. odorata, A. muricata and D. erecta.
We found that P3Net no longer provided good results in the assess-
ment of the species that were not trained before (Figure 5A). The
biggest drawback was found in from the predicted value of chloro-
phyll. Compared to the average MAE for the other two pigments,
the average MAE for chlorophyll appeared to be very large. Then,
we performed a second experiment by repeating the training pro-
cess for the P3Net with those 3 additional species (Cananga odor-
ata, Annona muricata, and Duranta erecta). After the training pro-
cess, we updated Leaf Piction with the newly trained P3Net. We
found a significant decrease in the average MAE by approximately
70%. Despite the experiment was run only with a very small num-
ber of samples (9 leaves for each species), it was able to show a
decreasing trend in the average MAE (Figure 5B). Therefore, we
believe that by increasing the number of samples for the 3 species,
its average MAE will be equivalent to the previous 4 species.
Therefore, whenever there is a need for a particular species assess-
ment, the P3Net needs to be updated by retraining it with the new
data from that species. Further studies are also needed to explore
the correlation between the phenotypic similarities of different
species and the similarity of its photosynthetic pigment content
behaviour. The results of the first experiment in Figure 5A shows
that compared to C. odorata and A. muricata, the average MAE of
D. erecta looked much smaller, even though all of them had never
been trained on P3Net. Such condition may be possible because of
the phenotypic similarity of D. erecta with one of the 4 species that
was trained on P3Net.

Conclusions
In this study, we have developed P3Net, which is a CNN archi-

tecture that has the ability to predict the photosynthetic pigment
contents in plant leaves using digital images. We showed that CNN
was powerful for regression tasks. The P3Net performed better
than the other popular CNN architectures, including LeNet,
AlexNet, and VGG-9. In the presence of low sample size data, its
training MAE reached 0.00624±0.00071 and its validation MAE
was 0.01249±0.00219 (for normalized data that were scaled to 0-
1). Low sample size data were the main challenge, because they
resulted in severe overfitting in all the tested architectures.
However, the application of spatial-based augmentation methods
proved able to remove the overfitting. Therefore, we also showed
that a CNN architecture could be well-trained, even when in the
presence of low sample size data. We demonstrated that the best
data representation was using the LAB colour model and the best
ROI was using the full leaf area with a background. Moreover,
since the pigment content in plants was strongly correlated with its
visual colour, our experiment showed that the filters on P3Net,
which were generally known to be superior in recognizing objects
using shape features, were also superior in recognizing colour fea-
tures. However, in order to gain a better understanding of its
behaviour in greater detail, further research is needed. Finally, the
implementation of P3Net on mobile applications (Leaf Piction)
made it easier to use in the field. The user simply needs to use the
camera on the leaf of the plant. Then, the application would display
a prediction of the 3 photosynthetic pigment contents in real-time.
In a denormalized form, the prediction error was ±2.93 μg/g for
anthocyanin (in the range of 0-345.45 μg/g), ±2.14 μg/g for
carotenoid (in the range of 0-211.30 μg/g) and ±5.75 μg/g for
chlorophyll (in the range of 0-892.25 μg/g). Leaf Piction accuracy
was shown to be stable against varying illuminance, but not against
out sample species (species that have not been trained on P3Net).
However, the ability of Leaf Piction to predict the content of the
photosynthetic pigments can be easily updated for other species of
plants using an artificial intelligence-based approach.

                             Article

Figure 5. Performance evaluation of Leaf Piction; A) first experiment, the CNN model (P3Net) embedded in Leaf Piction was trained
by Graptophyllum pictum, Jasminum, Piper betle and Syzigium oleana; B) second experiment, the P3Net was by all species, but with a
limited number of samples for Cananga odorata, Annona muricata, and Duranta erecta.
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