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The FT of discrete stationary series of length M equispaced at intervals Δs {xs, s=0,1,…,M-

1} (with s being spatial or temporal location on the series) is defined as (Shumway, 1988): 
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for k= 0,1….,M-1. In Equation A1, X(k) are the Fourier coefficients, i= 1− , νk = k/M is the 

frequency (or wave number) in cycles per unit distance (or time) and xM is the sample mean. 

If the series is detrended, xs in Equation A1 is the detrended series.  

The FT in Equation A1 may be written in terms of sine and cosine transform by noting that:  
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This way, Equation A1 becomes: 
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The Fourier coefficients X(k) are complex numbers. Most software packages (MatLab, SAS, 

Microsoft Excel, …) have a built-in fast Fourier transform (FFT) algorithm that considerably 

speeds up the computation of Equation A1, with the sine and cosine transforms available 

immediately from the real and imaginary parts of the computed X(k).  

The real part of the FFT corresponds to the cosine series and the imaginary part corresponds 

to the sine. The MatLab FFT returns data that can be used to get the following coefficients: 
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that can be used for recovering the original data signal by: 
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As most of the variability of the original EMI and TDR data is contained in the first (low 

frequency) three to six harmonics, these may be retained while removing the higher 

frequencies harmonics, to rebuild a smoothed data series through the Equation A5 without the 

noise. The cut-off frequency for smoothing the original data may be identified by looking at 

the power spectral density of the data series. 

The periodogram, which may be written as the squared modulus of the FT: 
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where the overbar denotes complex conjugate, is approximately an unbiased estimator for the 

spectrum (Shumway, 1988). Each value of Px(νk) has two degrees of freedom and its 

interpretation is generally difficult with excessive scatter of neighbouring values and 

occurrence of unexpected peaks. Also, the variance does not decrease to zero when the 

sample size tends to infinity. For this reason, it is common practice to average adjacent values 

of the periodogram to obtain estimates with higher degrees of freedom, and thus create a 

smoothed power spectrum.  

The average spectral estimator in a frequency interval centered on νk is defined as: 
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where L is some odd integer considerably less than M defining the averaging window. In 
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frequency terms, the averaging window may be expressed as a bandwidth B=L/M (cycles per 

point) centered on νk. ( )kBP
xf ν,  is the periodogram-based power spectrum averaged on B. It 

is distributed approximately as a chi-squared χ 2 variable in which the degrees of freedom 

depend on the window width L used.  

The 100(1-α) confidence interval for the smoothed spectrum can be calculated as: 
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where α is the significance level and ( )kn
xf ν  is the background noise power spectrum. The 

null hypothesis is ( )kBP
xf ν, = ( )kn

xf ν  vs ( )kBP
xf ν, ≠ ( )kn

xf ν . If ( )kn
xf ν  falls within the 

interval in Equation A7, we fail to reject the hypothesis. If not, the estimated power spectrum 

at a given frequency νk has to be considered significantly different from that of the assumed 

background noise. For the case of a white noise, implying a uniform distribution of the power 

spectrum across frequencies, ( )kn
xf ν  can be considered as the mean of all power spectrum 

estimates. 
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