
Abstract
Seasonal changes in rainfall and temperature brought about by

climate change affect water resources availability for rice produc-
tion areas. There are currently no published applications of the soil
and water assessment tool (SWAT) model on quantified effects of
climate variability on irrigation service areas for rice production.
The study assessed the impacts of climate change on dependable
flow and potential irrigable areas of the Maasin River in Laguna,
Philippines. Projected variations of rainfall and temperature in
2020 and 2050 developed using PRECIS model based on special
report on emission scenarios were employed. The SWAT model
was then used to simulate stream flow for each climate change
scenario, from which dependable flows were quantified using
flow duration analysis. Diversion water requirements for the rice
areas in the watershed were determined using CROPWAT. Based
on dependable flows and irrigation demand, the potential irrigable
areas were estimated. Calibration and validation of the SWAT
model showed satisfactory performance in stream flow simula-
tions. The dependable flow in irrigation systems may decline by
more than 50% in 2020 and by as much as 97% in 2050, because
of seasonal changes in rainfall. In effect, the potential irrigable
area may decrease to less than half of the current service area

depending on the level of greenhouse gases emissions. SWAT
water balance projections suggest surface runoff during wet sea-
sons and increase annual groundwater recharge are possible
sources of supplemental irrigation. Provisions of suitable storage
reservoir facilities and groundwater development projects will
alleviate water scarce conditions. The study demonstrated a tech-
nique that may be applied in other irrigation systems in the
Philippines and in other countries to quantify the effects of climate
change on dependable flows and potential irrigable areas. It can
serve as an input to water resources planning and policy recom-
mendations for climate change adaptation and risk reduction
strategies. This technique can also be used to assess water
resources in other perennial rivers and its viability for the devel-
opment of new irrigation systems in the Philippines.

Introduction
Crop production systems are largely dependent on climate. A

huge part of economic losses in crop production is attributed to
climate change and variability. In the Philippines alone, a single
event of prolonged drought linked to El Niño in 2010 has resulted
to 12 billion pesos (US$235 million, 1Php = US$51) of economic
loss in agriculture, which adversely affected the livelihood of
many smallholder farmers. The current trend shows that severe
drought occurs in the country every 4 to 5 years, which would
mean more potential damages to crop production. Lansigan et al.
(2000) concluded that 65%, 81% and 52% decline in rice yield
were experienced in the Philippines due to the strong El Niño
events in 1973, 1983, and 1990, respectively. Furthermore, trend
analyses of rice yield showed declines for every 1�C increase in
seasonal mean temperature by 15% from 1979 to 2003 (Peng et
al., 2004) and by 13.7% from 1970-2005 in the rainfed areas in the
country (Roberts et al., 2009).  Meanwhile, food security issues
have driven many countries to be agriculture competitive and
growing population has motivated this sector to improve crop pro-
duction. The Intergovernmental Panel on Climate Change (IPCC)
confirmed that rising temperature is causing more floods and dan-
gerous heat waves in many parts of the world. Based on current
trends in fossil fuel burning, there could be temperature increases
of 3.7°C to 4.8°C by the end of the century. According to projec-
tions, the Philippine climate will be wetter during wet seasons and
drier during the dry seasons in 2020 and 2050. Thus, dependable
flow for irrigation purposes may also vary, which will likely affect
water supplies in major farm production areas. Many rice areas in
the Philippines are already experiencing inadequate available
water supply despite abundant annual rainfall amounting to about
2000-mm. Annual rainfall distribution is becoming more variable
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with some periods of the year having a limited downpour, thus,
leaving many irrigation systems’ service areas undersupplied.
During these conditions, crop yield declines and this adversely
affects the national targets on agricultural competitiveness and
food security agendas. 

Irrigation systems’ service areas are generally designed based
on dependable flows. Many irrigation systems are unable to irri-
gate their designed service areas due to many factors such as
design, social, administrative and the looming issues on climate
change. However, information on the reduction of irrigation ser-
vice areas due to climate change is rather limited in published lit-
erature. The present study is an attempt to address this gap using
the soil and water assessment tool (SWAT) model with its ability
to simulate streamflow. The SWAT model is a process-based
watershed-modelling platform that has a continuous development
period of more than 30 years which began in the early 1980s
(Gassman et al., 2007). It can spatially simulate land and water
processes from sub-daily to annual timescales. Spatial output can
vary from hydrologic response unit (HRU) to basin-wide
(Srinivasan et al., 1998). It is widely used to estimate the impact of
various watershed management on soil erosion, runoff and soil
nutrients across soil type, climate and topography (Neitsch et al.,
2011). Many studies showed that SWAT has the capability to sim-
ulate watershed variables. The bulk of these studies reported that
SWAT could accurately simulate stream flow. SWAT has also been
extensively used and scientifically accepted for water balance
studies, assessments of water quality and plant growth in water-
sheds. Many conference proceedings and peer-reviewed research
articles manifested SWAT’s robustness of its application in
research. The readily available climate projections brought over-
whelming research opportunities in the SWAT scientific communi-
ty especially in evaluating its effect on stream flow. For example,
in Colorado, Kopytkovskiy et al. (2015) reported that an increase
in temperature due to climate change would result in an alarming
decline in river water level by as much as 70%. In Asia,
Reshmidevi et al. (2018) used climate projections from 5 global
climate models (GCMs) in India and found from their assessments
that there is a marginal reduction in annual stream flow and other
water balance parameters in the future because of increasing
greenhouse gas emissions. Changes in flow duration curves for
each climate projections were also examined and discussed in
terms of changes in moderate, high and low flows. However, noth-
ing about dependable flows for irrigation was deliberated.
Combalicer and Im (2012) concluded from their study that climate
change could significantly affect stream flow especially in lands
with special uses in the Philippines. SWAT has also been employed
for irrigation studies in agricultural watersheds. Zheng et al.
(2010) studied the water balance in an irrigation district in China
and found that SWAT is applicable for this purpose. Xie and Cui
(2011) did the same with a focus on rice paddies and suggested fur-
ther testing of the model in such areas. Luo et al. (2008) used
SWAT to investigate plant-soil and groundwater interactions and
concluded that SWAT’s plant and soil water components can still
be refined for better simulation outputs. 

To date, no study on the use of SWAT model to determine the
impact of climate change on irrigation parameters exists in pub-
lished literature and even in the previous works aforementioned, as
well as in the SWAT application reviews of Bressiani et al. (2015)
and Gassman et al. (2007). Moreover, there are only few published
SWAT related researches in the Philippines and none of them dealt
with simulation of climate change impacts on irrigation. This study
aimed to quantify the impact of climate change on dependable
flows and potential irrigable areas using the SWAT model. 

Data and methodology

The study area
The study site is a typical agricultural area in the Philippines

with abundant annual rainfall with distinct wet and dry seasons. It
is flooded when there is sustained and intense rainfall, which nor-
mally occurs in the last quarter of the year. However, during dry
seasons it experiences a shortage of irrigation supply in the first
half of the year. The watershed under study is located in the
province of Laguna, Philippines. It covers 3 of the province’s
municipalities namely Victoria, Pila, and Nagcarlan (Figure 1). It
has a catchment area of 5067 hectares that is dominated by rice
paddies. The Maasin River Watershed is predominantly croplands.
About 40% of the catchment or 2008 hectares are planted with
lowland rice and 41% with perennial crops. The rice areas are
largely dependent on the watershed river for irrigation. The river
stretch is 13 km long with headwaters from the Municipality of
Nagcarlan, outlet at Victoria and drains in Laguna Lake. 

Mean elevation is 66 meters above mean sea level with maxi-
mum and minimum values of 649 and 96 meters, respectively. Soil
type ranges from clay, clay loam to loam. Most of the rice areas are
clay soils. More than half of the catchment area (66%) is relatively
flat at 0-8% slopes. 

Data requirement of soil and water assessment tool
SWAT can run at the minimum available data set. The mini-

mum data requirements for SWAT are weather, landuse, soil, and
elevation. These data are used to define the hydrologic response
units (HRUs) in watersheds. HRUs are parcels of the watershed
classified by SWAT based on homogenous landuse, soil type, and
slope. It is the smallest unit for analysis in SWAT. Digital elevation
model is important for the automatic delineation of a watershed
divide. SWAT also uses DEM to draw the streams and flow accu-
mulations. It is also the basis to calculate some watershed parame-
ters such as sub-basin area, stream length, channel slope, and oth-
ers. Many areas in the Philippines have limited to almost no hydro-
logical information that is important for the proper assessment of
irrigation sources thereby implicating difficulty in irrigation sus-
tainability planning. The area, for example, does not have observed
data on stream flow, evapotranspiration, groundwater data that are
fundamental in water balance studies. Researchers in the
Philippines also recognised the same problem for their studies
(Palao et al., 2013; Briones et al., 2016). Investing in data moni-
toring systems for these parameters are costly and requires years to
gather enough data for reliable studies. To augment lack of data,
many researchers published various methods for estimating these
data with results acceptable to the scientific community. They are
used for policy recommendations, management decisions and cli-
mate change assessments. This study applied some of these tech-
niques that will be described in the succeeding sections. 

Data sources and pre-processing 
The study area does not have long-term observed data that is

essential for calibrating and validating SWAT. Data resources,
however, are available in locations within 16 kilometres from the
study site. The weather data was taken from the University of the
Philippines, Los Baños (UPLB) agrometeorological station, 6 kilo-
metres from the area. Among the weather parameters, rainfall is the
most variable in time and space and probably the most important
in hydrology. The World Meteorological Organisation suggested
that the radius of influence of rain gauges is 25 kilometres, which
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qualify the rainfall input to the model. Moreover, Valencia et al.
(2015) reported from their study that rainfall has a radius of influ-
ence from 6 kilometres for daily scales to 15 kilometres for annual
data. Soil map from the Bureau of Soil and Water Management
(BSWM) was considered in the study. It was validated on the
ground using soil samples from rice paddies. These areas were
considered important for soil verification since the focus of the
study is potential irrigable areas. Land use is a result of reclassified
land cover map, which was sourced out from the National
Mapping and Resource Information Authority (NAMRIA). All the
inputs were prepared in consonance to the format required in
SWAT. The daily weather data was saved as txt files individually
for rainfall, maximum and minimum temperature, relative humid-
ity, wind speed and solar radiation following the default units in
SWAT. A weather station with monthly values of the weather

parameters was created in the weather user database of SWAT. The
Philippine-California Advanced Research Institute (PCARI) pro-
ject in UPLB provided the soil physical data. It was added in the
SWAT database and linked to the soil map of the BSWM. The land
cover data from NAMRIA was reclassified into landuse written
with codes recognise in SWAT database. Digital elevation model
requested from the Integrated National Watershed Research and
Development (INWARD) project funded by the Philippine Council
for Agriculture, Aquatic and Natural Resources Research and
Development (PCAARRD) was a primary input for watershed, sub
basin and stream delineation.

Stream flow is an important parameter for agriculture plan-
ning. It warrants planners to assess the sustainability of water sup-
ply to improve production. Monitoring this parameter, therefore, is
important. However, the study area does not have gauging stations

                             Article

Figure 1. Location, land cover, slope and soil map of the Maasin River watershed.
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to monitor the river flow. Various studies proposed different meth-
ods to estimate this parameter. Time series models such as Markov
and autoregressive moving average were found relatively adequate
in some studies to generate synthetic time series data like stream
flow (Akintuǧ and Rasmussen, 2005). These models are conven-
tional. However, long-term stream flow data are needed to gener-
ate synthetic data. 

Many simulation research works did not calibrate their SWAT
models against observed variables. For example, Tolentino and
Ella (2016) and Swain and Jha (2015) simulated ungauged river
catchments and compared the results from manually computed
runoff values from water balance and SCS-Curve. Number equa-
tions taking into considerations physical characteristics of the
watershed. Sanborn and Bledsoe (2006) estimated the stream flow
of ungauged streams through stratifying streamflow regimes of
gauged rivers. The present study preferred to calibrate the Maasin
River watershed using the available long-term observed stream-
flow from the nearby watershed. Area ratio method was used since
it is an acceptable technique to generate streamflow, which is rec-
ommended for watersheds with similar hydro climatic conditions.
Area ratio method is an interpolation technique using streamflow
data from nearby and similar watersheds as reference. Gianfagna
et al. (2015) assessed the applicability of this method and found
that it accurately estimated daily streamflow. Streamflow used for
calibration in this study was based on a gauging station 16 kilome-
tres away from the Maasin River watershed.

Soil and water assessment tool model set up 
With the pre-processed data, the SWAT model for the Maasin

River watershed was set up and initially simulated in preparation
for calibration. Watershed delineation for predominantly flat areas
was observed to produce virtually wrong location of streams,
which could yield erratic simulation outputs. SWAT has a limita-
tion on the accurate automatic extraction of the watershed and
reaches for flat areas. Luo et al. (2011) described an effective tech-
nique to address this within SWAT capabilities. The present study
employed this technique. The stream was first delineated based on
the Google earth and then verified in the field. Interviews with
locals were also conducted to trace the headwaters. The actual
stream layout was entered in the Burn-In option under the SWAT
watershed delineation window. After which, SWAT delineated the
sub basins of the Maasin River watershed. The outlet of the water-
shed was manually chosen. A threshold of 700 hectares for delin-
eation of sub-watersheds was keyed and thereby generating five
sub basins with complete topographic reports and parameters. 

HRUs were defined through inputting landuse, soil and keying
multiple slope categories. Slopes were categorised into flat to near-
ly flat (0-3%), gently sloping (4-8%), rolling (9-18%) and steep to
very steep (>18%). SWAT delineated the slopes based on the
DEM. This step yielded 164 HRUs. 

Each of the weather parameters’ txt file was then inputted in
the Write Input Tables window of SWAT and by then the SWAT
model for Maasin River Watershed was ready to initialise. Skip
year was set to 4 years and outputs were set to monthly. Water bal-
ance components of the watershed are the main output parameters.
Simulations were saved in preparation for calibration.

Calibration and validation process
For calibration, SWAT-CUP was preferably employed since it

is widely used and recommended by many researchers. It was then
set up for streamflow calibration. Prior to setting up, the SWAT ini-
tial result for the watershed under study was chosen in SWAT-CUP

for calibration. Subsequently, calibration parameters were chosen,
beginning and ending of the simulation were assigned and
observed streamflow from the area ratio method was stored in the
calibration platform. In addition, extraction files were defined.
Here, parameters that have to be the basis of SWAT-CUP for cali-
bration are assigned from the SWAT initial simulation results.
Also, objective functions are defined. NSE was preferably used
and a value of 0.5 was considered. The calibration was set to run
for 2000 simulation. Monthly mean streamflow of 8 years (1990 to
1997) was used for calibration. The SWAT calibrated parameters
were maintained to simulate streamflow for 7 years from 1998 to
2004 for validation. Statistical indicators for model performance
evaluation were selected based on the recommendations of
(Moriasi et al., 2007). The coefficient of determination (R2), Nash-
Sutcliffe model efficiency (NSE), root mean square error (RMSE)-
observations standard deviation ratio (RSR), and percent bias
(PBIAS) are the most widely used indicators for assessments. R2

describes the ratio of the variance in observed data explained by
the model. Its value ranges from zero to one, with higher values
indicating less error variance, and typically values greater than 0.5
are considered acceptable. The NSE is a normalised statistic that
defines the relative magnitude of the residual variance compared to
the observed data variance. NSE of greater than 0.5 is widely con-
sidered satisfactory. RSR is the ratio between RMSE and the stan-
dard deviation of the observed values. Zero RSR means there is no
error and the model is perfect for simulations. A lower RSR value
generally means better simulation results. PBIAS measures the
average tendency of the simulated data to be larger or smaller than
their observed counterparts. A PBIAS of +/-25% is considered sat-
isfactory. 

Scenarios building
Scenario analysis was used to evaluate the impacts of climate

variability potential irrigable areas. These scenarios are based on
the climate projections published by the Department of Science
and Technology-Philippine Atmospheric, Geophysical and
Astronomical Services Administration (DOST-PAGASA). They
used the Providing Regional Climates for Impact Studies model,
which has a resolution 25 by 25 square kilometres. The resolution
is relatively coarse, however, from the justification provided in
section 0 for the rainfall data; this is already eligible for the study. 

Climate change in this study is characterised by changes in
rainfall and maximum and minimum temperature. All the parame-
ter changes in the scenarios were based on the historical weather
data in the area. Climate scenarios considered were medium-range
and high-range emissions for 2-time frames, 2020 (2006-2035) and
2050 (2036-2065). They represent medium and high greenhouse
gas levels in the future if there will be no management interven-
tions made at present and increasing emission trends will be sus-
tained. The medium-range scenario represents a carbon dioxide
(CO2) level that is projected to reach 703 ppm CO2 level in 2100
and the high-range scenario up to 836 ppm. These scenarios were
primarily chosen for the study since according to DOST-PAGASA,
these would likely to happen in the future. Medium-range emission
scenarios were based on the historical trends and the high-range
was developed for impacts and adaptation point of view. The IPCC
developed and published the level of emission scenarios in its
Special Report on Emission Scenarios. Many modellers adapt it
across the world. Percent changes in rainfall and increase in tem-
peratures for the scenarios under the 2 periods are shown in Table
1. The impacts of these projected changes in rainfall and tempera-
ture to dependable flow and potential irrigable area were simulat-
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ed. These values are the 30-year average changes for two-time
slices 2020 (2006-2035) and 2050 (2036-2065). A substantial
decline in rainfall can be observed during the first 2 quarters and a
relatively small increase in the last quarter in both periods.
Temperature, both maximum (Tmax) and minimum (Tmin), keeps
on increasing across scenarios especially in the mid part of the
years. Values of rainfall and temperatures in 2020 and 2050 were
adjusted based on the local baseline data in the area and then
inputted in SWAT weather user database. This was made to down-
scale the changes and account for variability in climate in the case
study area. SWAT weather generator was used for projecting cli-
mate base from the monthly averages values. 

Determination of dependable flow
Dependable flows were determined for each scenario. It is the

stream flow at 80% probability of overflow taken from the flow
duration curve based on simulation outputs. Normal, Lognormal,
Log Pearson and Gumbel distribution probability functions were
evaluated for the best fitting of the simulated streamflow data. The
best-fit function was used to determine the dependable flow for
each scenario. There are also computer platforms available that can
be downloaded online. The adequacy of the time series data was
also assessed using the minimum time series data equation;

                                                                                                 
xmin=(4.3t10 logR)2+6                                                                 (1)

The minimum data is a function of the value of the t distribu-
tion of 10% level of significance (t10) at (N-6) degrees of freedom
and the ratio of the magnitude of the 100-year event to the 2-year
event, (R). 

Calculation of potential irrigable area
The potential irrigable area is the ratio of the dependable flow

to the diversion water requirement. The dependable flow was
derived from SWAT streamflow outputs as described in Section 0
and the diversion water requirement computed from the farm water
requirement result of CROPWAT. These were determined for the
baseline and all the scenarios. Changes relative to the baseline

were quantified as the impacts of climate on the potential irrigable
area. CROPWAT was used to establish the irrigation supply
scheme of the rice-rice cropping pattern. It is a computer-based
tool developed by the Food and Agriculture Organisation (FAO)
for quantifying crop water requirement and irrigation scheme sup-
ply. It also provides the irrigation water requirement at the farm
level. Tibebe et al. (2016) also used CROPWAT in estimating crop
water demand and SWAT for runoff approximation but they
focused on supply and demand deficit assessments in their study
area, which relatively differs from the present study.

The data input includes the baseline rainfall and climate, soil,
crop management, and crop coefficients. Planting was set to the
actual planting periods in the study area, which is January for dry
season and July for the wet season. The established irrigation
application efficiency was 70%, which is suitable for planning pur-
poses. To compute for the diversion water requirement, a con-
veyance efficiency of 80% was used. 

Results

Calibration and validation
Both calibration and validation of the Maasin River watershed

using streamflow yielded a satisfactory result (Figure 2).
Calibration process had 0.82 R2, 82% NSE, 0.024 RSR and -3.7%
PBIAS while validation had 0.73 R2, 71% NSE, 0.004 RSR and –
5% PBIAS. These suggest that the model can adequately simulate
streamflow of the river. Briones et al. (2016) also plausibly cali-
brated and validated a SWAT model in Palico River watershed in
the Philippines using observed streamflow. These suggest that
SWAT is applicable for streamflow simulations in Philippine
watershed conditions. Their model also had a lower performance
during the validation period relative to the calibration period; how-
ever, the validation of the model in this study had better results.
The slight changes in land cover in the watershed may have been
contributed to this result. In addition to this, the watershed in this
study is more than 4 times smaller compared to the Palico River

                             Article

Table 1. Projected average changes in rainfall and temperature for 2020 and 2050 in the study area.

Scenarios                                                                Quarter                            Rainfall, %                             Tmax, °C                   Tmin, °C
2020

High-range emission scenario                                                     DJF                                                –31.6                                                    0.4                                       0.6
                                                                                                           MAM                                                –9.8                                                     0.8                                       0.8
                                                                                                             JJA                                                  10.7                                                     0.5                                       0.8
                                                                                                            SON                                                   0                                                       0.6                                       0.7
Medium-range emission scenario                                               DJF                                                –20.2                                                     1                                        0.9
                                                                                                           MAM                                               –31.5                                                    1.3                                       1.1
                                                                                                             JJA                                                   2.9                                                      0.9                                       1.2
                                                                                                            SON                                                   2                                                         1                                          1
2050

High-range emission scenario                                                     DJF                                                 –31                                                     1.3                                       1.5
                                                                                                           MAM                                               –21.3                                                    1.8                                       1.9
                                                                                                             JJA                                                   0.3                                                      1.7                                       1.9
                                                                                                            SON                                                 2.1                                                      1.6                                       1.7
Medium-range emission scenario                                               DJF                                                  0.1                                                       2                                        1.8
                                                                                                           MAM                                               –34.8                                                    2.4                                       2.1
                                                                                                             JJA                                                   6.8                                                      1.7                                       2.3
                                                                                                            SON                                                 0.4                                                       2                                        1.9
DJF, December, January and February; MAM, March, April and May; JJA, June, July, and August; SON, September, October, and November.
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watershed with a catchment area of 23, 691 ha. Future calibration
and validation studies in data-limited areas may be improved using
satellite data. Parameters calibrated and their corresponding fitted
values are shown in Table 2.

Projected mean annual and monthly streamflow
Mean annual streamflow is highly affected by climate change

due to increase in temperature and decreased rainfall. It is project-
ed to decrease by half under medium range scenario in 2020 and
there will only be 5% streamflow left relative to the present condi-
tions by 2050 in the medium range and in the 2 high range scenar-
ios (Figure 3). This shows that further increase in greenhouse gas
emissions will dry up the Maasin River, which would leave many
rice areas under water stress conditions assuming that the crop
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Figure 2. Statistical indices that show the goodness of fit between the observed and simulated stream flow during the calibration and
validation processes.

Table 2. Calibrated SWAT parameters for the Maasin River watershed.

Parameter name             Description                                                                   Fitted value                 Minimum value     Maximum value

1    R__CN2.mgt                        Initial SCS CN II value                                                                               0.0709                                           –0.2                                   0.2
2V__ALPHA_BF.gw                   Base flow alpha factor [days]                                                                0.52575                                             0                                       1
3V__GW_DELAY.gw                 Groundwater delay [days]                                                                   230.024994                                         30                                    450
4 V__GWQMN.gw                    Threshold depth of water in the shallow aquifer 
                                                     required for return flow to occur [mm]                                              0.8775                                              0                                       2
5V__GW_REVAP.gw                 Groundwater revap coefficient                                                              0.12955                                             0                                      0.2
6   V__ESCO.hru                      Soil evaporation compensation factor                                                 0.91875                                           0.8                                      1
7   V__OV_N.hru                      Manning’s n value for overland flow                                                   12.298403                                        0.01                                    30
8  V__CH_N2.rte                      Manning’s n value for main channel                                                    0.012225                                            0                                      0.3
9   V__CH_K2.rte                      Effective hydraulic conductivity [mm hr–1]                                       96.78125                                            5                                     130
10V__ALPHA_BNK.rte            Base flow alpha factor for bank storage [days]                                0.02625                                             0                                       1
11R__SOL_AWC(..).sol          Available water capacity of the soil layer, mm/mm                            0.21985                                          –0.2                                   0.4
12R__SOL_K(..).sol                Saturated hydraulic conductivity, mm h–1                                            –0.3444                                          –0.8                                   0.8
13R__SOL_BD(..).sol             Moist bulk density, g cm–3                                                                     –0.391375                                        –0.5                                   0.6
r, existing parameter value is multiplied by (1+ given value); v, existing parameter value is to be replaced by given value.
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management being employed today will be the same across scenar-
ios. Mean monthly flows, however, increased starting July to
October and declined from November to June in the 2020 medium-
range scenario. This can be attributed to the increase in rainfall in
the 3rd quarter of the year and large decrease within the first 2 quar-
ters. Rainfall plays a big role in streamflow changes, streamflow
increases with rainfall. A similar trend was discussed by Tan et al.
(2017) in India. With further increase in GHG in 2050 medium
range and for both periods in high range emissions, monthly mean
flows decline throughout the year. This result can be due to
increasing temperature and thus evapotranspiration increases. This
is coupled with a substantial reduction in rainfall in high range sce-
nario by as much as 31% in the first quarter and 21% in the 2nd

quarter of the year. In the 2050 medium range scenario, the largest
decline in rainfall falls during the 3rd quarter of the year. 

Projected dependable flows
Log Pearson probability distribution function had the best fit

for the discharge data (not shown). It was then employed to deter-
mine the mean annual dependable flow for the period 1990 to
2004. Similarly, the dependable flow for each scenario and time
frame were determined. The computed minimum data using
Equation (1) was 7 years, which means that the 15-year data used
in this study is more than enough for water resources studies. 

Dependable flows of 80% probability of overflow are project-
ed to decline considerably by more than 50% when emissions are
at the medium range in 2020 (Figure 4). Projections showed that
there would only be 3% of dependable flow left relative to the

baseline in 2050 medium range emissions and in both time frames
in high levels of emissions. The flow duration curves of 2050
medium range, 2020 high range, and 2050 high followed the same
trend and thus overlapped. This suggests that a further increase in
levels of greenhouse gases (GHG) emissions beyond the levels of
medium range in 2020 will leave the rivers’ source of water unre-
liable for irrigation. 

Potential irrigable area
CROPWAT computes the largest deficit in rainfall during the

month of June thereby needing more irrigation supply (Figure 5).
This is attributed to high water requirement during land soaking
and land preparation for wet cropping season. The soil during this
month is relatively dry because it immediately follows the dry sea-
son. The residual moisture content from the dry season is very low
thereby higher water demand. On the other hand, there are no rain-
fall deficits in the months of May and July to November. Fallow
period falls in May and November while rainfall is very much
abundant from July to October. The farm water requirement appro-
priately considered was taken from the month of June amounting
to 1.38 lps ha–1 (0.00138 m3 s–1). 

The computed DWR based on the farm water requirement was
1.73 lps ha–1 (0.00173 m3 s–1). With this, the potential irrigable
area for a dependable flow of 1.48 m3 s–1 in the reference scenario
taken from Figure 4 was found to be 855 hectares only (Table 3).
This means that the dependable flow in the Maasin River is not
enough to irrigate the actual area of 2008 hectares. This suggests
the need for other water resource development such as rainwater

                             Article

Table 3. Projected potential irrigable area.

Scenario                                                    Dependable flow, m3 s–1               Water duty, lps ha–1               Potential irrigable area, ha

Baseline                                                                                             1.48                                                            1.73                                                                855
Medium-range                    2020                                                     0.61                                                            1.73                                                                353
                                                2050                                                     0.05                                                            1.73                                                                 29
High-range                           2020                                                    0.049                                                           1.73                                                                 28
                                                2050                                                    0.048                                                           1.73                                                                 28
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Figure 3. Mean annual and monthly streamflow. Note that the lines for 2050 medium range, 2020 high range, and 2050 high range
almost overlapped.
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harvesting or groundwater. The SWAT simulation results showed
high runoff during wet seasons and a considerable amount of annu-
al recharge. Furthermore, results also showed that there is a con-
siderable reduction in the potential irrigable area by 57 to 97%.
This is largely due to changes in rainfall and temperature brought
by the increase in greenhouse gas emissions. Diversion water
requirements used were assumed the same across scenarios to sim-

ulate most of the irrigation systems’ operational and management
practice of not updating these requirements. 

Other potential sources of irrigation supply
With decrease trends of dependable flows simulated in the

Maasin River, SWAT results showed other potential sources for
supplemental irrigation particularly helpful for dry seasons. 
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Figure 4. Flow duration curves for baseline and all scenarios. Note that the curves for 2050 medium range, 2020 high range, and 2050
high range had the same trend and thus overlapped.

Figure 5. Irrigation water requirement for the rice-rice cropping pattern.
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Surface runoff is sustained in all the scenarios with a relatively
moderate decrease from 16 to 22% except for 2050 high range sce-
narios (Figure 6). It had a large decline of about 82% relative to the
baseline scenario. The lowest runoff in 2050 high-range emission
scenario amounting to 157.19 mm is equivalent to almost 9 million
cubic meters of water collected from the 5067 hectares catchment
area. This only shows that reservoirs are a promising development

project, which could serve as a source for supplemental irrigation
for dry seasons. It will also be an important facility for flood miti-
gation. Moreover, it is being used as groundwater recharge in other
countries.

In addition, groundwater recharge is likely to increase even
with increased GHG emissions (Figure 7). From the water balance
results, percolation out of soil was the most contributing factor in

                             Article

Figure 6. Projected surface runoff for the baseline and all scenarios, mm.

Figure 7. Projected groundwater recharge for the baseline and all scenarios, mm.

JAE_fascicolo 2019_02.qxp_Hrev_master  24/06/19  10:54  Pagina 96

Non
-co

mmerc
ial

 us
e o

nly



the variability of groundwater recharge. Awan and Ismaeel (2014)
found the same increasing trend in groundwater recharge and
reported 40% and 37% increase in representative concentration
pathways (RCP) 4.5 and RCP 8.5, respectively. These RCP scenar-
ios are also a representation of changes in rainfall and temperature
because of GHG emissions. In the present study, the annual
recharge of 310 mm by 2050 in high range emissions is corre-
sponding to an annual supply of 15.7 million cubic meters.
Although recharge has an impact on groundwater levels, more
importantly, groundwater extractions will definitely have an effect
on the actual levels of groundwater in the area. Groundwater levels
were not considered in the present study. However, Ella (2011)
projected that groundwater levels in the nearby area will likely
decline by 0.43138 m, 0.45143 m and 0.45177 m with a decrease
in rainfall of 0, 10, and 20 percent, respectively. Recharge is gov-
erned by the conditions above the water table, thus it is indepen-
dent of groundwater levels. The country has vast groundwater
resource that is spatially variable, which can be affected by various
factors aside from climate change that may include watershed
degradation, population growth, and industrialisation, to name a
few. This suggests a thorough investigation of the impacts of these
factors on the groundwater resource in the study area.

Conclusions
The study quantified the impacts of climate change on depend-

able flows and potential irrigable areas in irrigation systems.
Climate change leads to a decrease in potential irrigable area due
to a decrease in dependable flow and an increase in irrigation water
requirements in the study area, particularly under high emission
scenarios. Because of the increasing greenhouse gas emissions
brought by rapid industrialisation, there will be a substantial
shrinking of irrigable areas in irrigation systems, which may range
from 57% to 97%. This could be a threat to food security in major
rice producing areas as well as in the areas dependent on rice
importations. SWAT water balance results revealed other potential
sources of irrigation supply such as reservoirs for surface runoff
and groundwater development projects from aquifer recharge.
Further investigations on these potential resources and how they
change in the future are suggested. Nevertheless, these results
showed an opportunity for improved rice yields amidst climate
change. Irrigation expansion and development of new irrigation
systems are necessary to ensure food production during extreme
climate conditions. Assessment of water resources in other peren-
nial rivers in the country for new irrigation system development
can be done using the methodology in this study. 

The study presented a useful methodology to assess the
impacts of climate change to irrigable areas in irrigation systems to
support operation and management decisions for climate change
adaptation and risk reduction strategies. This technique can be rec-
ommended for use in other irrigation systems in the Philippines
and in other countries to evaluate the impacts of climate change in
their service areas. Also, it is a useful method in irrigation system
planning particularly in setting designed service areas. This way,
smallholder farmers suffering from yield and income losses
because of drying farms in irrigation systems could be avoided.
Factors, other than climate change (e.g. landuse change), which
may affect potential service areas in irrigation systems can also be
evaluated using the suggested technique. In data challenged water-
sheds, the supplemental use of satellite data may be explored to
improve the calibration and validation of SWAT models. 
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