
1. Introduction

Reliability of hydraulic and hydro-geological risk
evaluations in a fixed region mostly depends on the
knowledge of intensity-duration-frequency relation-
ship (IDF) of extreme rainfall events.

In fact, in order to evaluate peak flood events in
ungaged sites and considering the short sample size of
extreme flood events temporal series, it is often pre-
ferred to recur to pluviometric determinations and use
indirect rainfall-runoff models. 

From a statistical point of view, the actual necessi-
ty to evaluate a return period higher than the sample
size showed the inadequacy of inferential statistical
techniques. These techniques are inappropriate to de-
terminate correctly the distribution right tail, leading
to modern regionalization techniques.

The spatial-temporal stationarity hypothesis within
statistically homogeneous wide areas, adopted by
such techniques, allows the information transfer from
space to time. The latter solution allows high sample
size, ensuring the moments and the reliable probabili-
ty distribution estimations. The many and diversified
regionalization techniques proposed in the last years
may nevertheless conduct to very different results, ac-
cording to different modalities and approaches adopt-
ed in their implementation. 

The “index flood”1 method is the regional tech-
nique widely used in Italy thanks to the commitment
of the Italian National Research Group for the Preven-
tion of Hydro-Geological Disaster (GNDCI), belong-

ing to CNR [5, 6, 7]. This group has developed a spe-
cial operative programme for the definition of suitable
methodologies and uniform procedures to estimate in-
tense rainfall and peak flood in Italian country [5, 6,
7, 23], developing a national research project, called
VAPI (VAlutazione delle Piene in Italia), based on the
use of TCEV (Two-Component Extreme Value distri-
bution) probabilistic model [1, 20]; in Sicily the men-
tioned study was delivered in 1993 by the GNDCI re-
search unit, supervised by prof. Ignazio Melisenda
Giambertoni. 

In this manuscript we update the regional study
carried out by the Sicilian research unit about short
duration extreme rainfall, introducing also the sequent
recent regionalization techniques:
• the probabilistic regional model based on L-mo-

ments, assuming that the latter statistics are con-
stant in homogeneous regions [11, 12, 13];

• the parametric method MGs, introduced by Maione
et al. [2, 16, 17], which considers the spatial vari-
ability of the conventional moments higher than
the first order. 

2. Regional models

2.1 TCEV model

This model can be classified as an “index flood”
method, whose main assumption is that the hydrolog-
ic variable X, within a statistically homogeneous re-
gion, has the same frequency distribution F(x=X/I),
apart from a scale factor I(X), called index flood. I(X)
is usually the at-site mean of the probability distribu-
tion, though any location parameter of the distribution
may be used.

In a homogeneous region, the variable X(T), for a
fixed return period T, is estimated as the product be-
tween the index flood and the dimensionless quantile
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x(T) of the regional frequency distribution F(x):

X(T)=I(X) x(T) (1)

The function x(T) is called “growth curve”.
The regional model based on TCEV (two-compo-

nent extreme value) distribution is valid under the hy-
pothesis of stationarity and spatial-temporal inde-
pendence of the observations [23]. 

The TCEV distribution explains the population of
annual maximum value as originating from two dif-
ferent populations, the first one caused by ordinary
events and the second one caused by extreme events
[5, 19, 23]. The TCEV expression is: 

F(X) = exp[-l1exp(-X/q1)-l2exp(-X/q2)] (2)

where the parameters l1, l2 are the mean number of
annual events respectively of the ordinary component
and the outlying one (shape parameters, with l1>>l2)
and q1, q2 are scale parameters, respectively of the or-
dinary component events and the extraordinary one
(q2 >>q1) [20].

The distribution probability F(x) of the variable
x=X/I, is:

(3)

where the shape parameter Q*= θ2/θ1 and the scale pa-
rameter L*= l2/l1

1Q* depend only on the distribution
coefficient of skewness g [5, 19, 23].

A hierarchical procedure of the regional parameters
estimation, based on three successive levels, derives
from the further observation that the coefficient of
variation CV of the TCEV distribution depends on the
parameters L*, Q* e l1 [23].

The first level of regionalization implies the re-
search of regions with g constant, which involves L*

and Q* (estimated by the maximum likelihood
method) constant, in the same region.

The second level of regionalization requires the re-
search of sub-regions with CV constant, which in-
volves l1 constant in addition to L* and Q* constant.

The third level of regionalization consists in the
definition of empirical relations able to estimate the
index value.

2.2 LM model

Among the index flood methods recently intro-
duced, we find the regional probabilistic model based
on the use of the linear moments, called L-Moments
(afterwards called LM).

Representing an evolution of the probability
weighed moments introduced by Grenwood et al.
[10], LM are estimated as linear function of the data
respect to conventional moments, which are ex-
pressed by the elevation to power of the data. This
implies that: 
• LM are less sensitive than conventional moments

to the presence of outliers in a sample [13, 24]; 

• LM estimators are unbiased for all sample sizes
and all distributions, also in the case of highly
skewed distributions, against conventional mo-
ments [24]. 
Besides LM, respect to conventional moments, al-

low a more robust estimation of frequency distribu-
tion parameters, especially for small samples [13, 24]
and a more efficient statistical parameter estimation
than the maximum likelihood method [13]. In particu-
lar the latter method, applied to small samples, loses
in accuracy [3, 13]. 

Vogel [24] showed that the use of the LM is prefer-
able in the case of highly skewed distributions if the
probability distribution identification of a data sample
is made by graphic comparison between the moments
empiric values and the moments theoretical distribu-
tion.

The first four L-moments are [13]:

(4)

where E is the expected value and Xi,j is the variable
value, growing ordered, of the sub-sample with size j
drawn by the sample considered.

Analogously to traditional moments, l1 is a loca-
tion measure of the distribution and coincides with the
sample mean, l2 is a scale measure of the distribution
and is always greater than, or equal to, zero [13].

The L-moments ratio are dimensionless quantities
and are defined as follows [13]:

t = l2/l1, called L-CV (5’)
tr = lr/l2, where r = 3, 4, … (5’’)

where t (L-CV), t3 (L-skewness) e t4 (L-kurtosis)
are respectively measures of variation, skewness and
kurtosis. For samples with positive values it turns out:
0 ≤ t < 1 e |tr| < 1 for r ≥ 3.

Hosking e Wallis [11, 12, 13] developed a region-
alization procedure based on LM ratio, articulated in
four steps:
1. Screening of the data using discordancy measure

test;
2. Identification and test of homogeneous regions;
3. Choice of a regional frequency distribution;
4. Parameters estimation of the regional frequency

distribution.
The first step consists in an inspection of the data,

towards the aim to identify errors, inconsistencies,
trends and outliers, through the statistic D, that identi-
fies sites grossly discordant with the group as a
whole.

Hosking et al. [13] qualify the site as potentially
discordant if the D value, calculated for every histori-
cal series in a fixed region, is greater than a critical
value estimated by the authors at significance level
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equal to 10% (discordancy measure D is however sig-
nificant only for regions with at least seven sites). For
regions with at least 15 sites, a site is considered dis-
cordant if D≥3.

The second step consists in grouping sites towards
the aim to identify a region with the support of classi-
fication techniques or multivariate statistical proce-
dure (as cluster analysis) based on geographic, physi-
cal and climatic station characteristics. To investigate
the regional homogeneity, Hosking proposed to evalu-
ate the heterogeneity measure H1, defined as [13]:

(6)

where V1 is the weighted standard deviation of the at-
site sample L-CV: 

(7)

and mV and sV are respectively average and standard
deviation of V1, computed by simulating 500 homo-
geneous regions. These generated regions contain
sites with the same record lengths of the region stud-
ied and the kappa distribution as parent distribution. 

Hosking and Wallis declare a region “acceptably
homogeneous” if H1<1, “possibly heterogeneous” if
1≤H1<2 and “definitely heterogeneous” if H1≥2.

However the authors underline that a moderated
heterogeneity (1≤H1<2) yields a quantile estimation
much more accurate than the at-site estimation; more-
over they recommend H=2 “as the point at which re-
defining … omissis … the region is very likely to be
beneficial” [13].

Furthermore Hosking, analogously to H1, defines
two other statistics for testing homogeneous regions:
H2 and H3. The first one is based on L-CV and L-skew-
ness and the last one on L-skewness and L-kurtosis.

In particular, the use of H3 is suggested in hierar-
chical procedure of regionalization [13].

The third step consists in the choice of an appropri-
ate frequency distribution for a homogeneous regions
previously identified. Towards this aim, Hosking and
Wallis define the statistic test Z, which allows to find
the frequency distribution fitting among the well-
known three parameters distributions:

Generalized Extreme Value (GEV), Generalized
LOgistic (GLO), Generalized PAreto (GPA), LogNor-
mal III (LN3) and PEarson III (PE3). The distribution
is considered as a good fit of the observed data if Z≤
|1,64| [13].

In the last step, the frequency distribution parame-
ters are estimated basing on regional sample L-mo-
ments ratio.

Hosking et al. furnished the relations between LM
and the mostly common frequency distribution pa-
rameters [11, 13].

2.3 MGs model

The principal hypothesis of index flood method is
the invariance of the moment greater than the first or-
der of the normalized variable, within a region con-
sidered statistically homogeneous.

Maione et al. [2, 16, 17], regarding annual maxi-
mum flood series, observe that the coefficients of
variation CV and of skewness g vary within large
Italian areas considered homogeneous in TCEV hier-
archical procedures. Moreover, the authors detected a
link between these two statistics.

The latter remark suggested the use of parametric
methods, which take into account the CV spatial vari-
ability and indirectly the g spatial variability by
means of the relationship g(CV). Maione et al. formu-
lated the two-parameters regional probabilistic model,
called MG, depending on both the average, m, and the
coefficient of variation, CV:

X/m = f(T, CV) (8)

Following this approach, the model varies in the
space according to CV; the X estimation depends on
CV and on the scale factor, m.

Towards the aim to further reduce the parameters
to be estimated, the same authors proposed the simpli-
fied MGs model. The latter is based on the observa-
tion that the normalization of the variable X respect to
the standard deviation s, made the corresponding
quantile not very sensitive to CV and g changes. In
this case, the quantile X/s could be expressed as func-
tion of the only return period, T:

X/s=f(T) (9)

As a consequence, the estimation of the variable X
depends only on the scale parameter s. In (9) we find
again the index flood expression, with index value s. 

The authors derived the MGs model equation em-
pirically, investigating the annual maximum floods
observed in 249 stations placed in all Italy [16, 17].

Assuming that:
• the i_th value Qij of the generic historical series j is

independent from the other values in the same se-
ries 
and observing that:

• the values Qij/sj (normalized respect to the stan-
dard deviation sj) can be drawn from a single pop-
ulation, 

the probability distribution P of the variable Q̂j/sj,
where Q̂ j is the historical series maximum value, can
be expressed by:

PQ̂/s(q) = PQ/s(q)Nmed (10)

where Nmed indicates the historical observation series
mean and q is the quantile.

Ordering the sample of Nel values Q̂j/sj (Nel repre-
sent the number of historical series) in decreasing or-
der, the quantile value, q and consequently the generic
variable, Q/s, is the one corresponding to the place el-
ement, Ntheor [2]:
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(11)

So, known Nel and Nmed, for each Ntheor, and thus
for a fixed Q̂j/sj, it is possible to evaluate the corre-
spondent return period T(Q̂j/sj) by equation (11).

The pairs (lnT, Q̂j/sj), representative of Italian
rivers maximum flood studied, plotted in a semi-loga-
rithmic diagram, showed, for T = 30-800 years, the
following linear relationship [2]:

(12)

where c and b are growth law parameters, valid in the
whole Italian peninsula.

3. Application to Sicilian rainfall data

3.1 Data

The data used in this work are the rainfall annual
maximum series of duration 1, 3, 6, 12 and 24 hours
in 235 sites, placed in all Sicily. The observed period
is 1928-1998 and every site had record length more
than 10, with sample size mean equal to 29.2. The
comparison between record length in VAPI study
(1928-1981) and the present upgrade, is showed in
figure 1.

3.2 TCEV model

Before investigating the first level of regionaliza-
tion, the third moment order independence (coefficient
of skewness g or L-skewness t3) by duration was veri-
fied, for sample size n≥30. In figure 2 the g and t3
substantial invariance by duration t is showed, where g
and t3 are respectively the means of coefficient of
skewness and coefficient of L-skewness, sample size
weighted. This observation implies the invariance of
Q* and L* by duration (temporal independence).

At the first level of regionalization, Sicily was hy-
pothesized as a spatial homogeneous region. This hy-
pothesis was verified through the heterogeneity meas-

ure H3, introduced by Hosking [13], for each duration.
The results of the latter test (table 1), show the homo-
geneity of all island in t3 and t4 for all duration, ex-
cepting t=3 hours.

The value H3=1.07 for t=3 hours indicates a poten-
tially heterogeneity. However, in order to obtain a bet-
ter quantile estimation, Hosking suggests to subdivide
a region in sub-regions only if H>2. For this reason,
the whole Sicily is also considered homogeneous for
t=3 hours.

After checking the spatial independence of the
third moment order, the values Q* e L* were estimat-
ed for sites with n≥30 (record length mean equal to
48) and for all durations with the maximum likeli-
hood method [5]. The resulting parameters are:

Q* = 2.399 and L* = 0.360 (13)

At the second level of regionalization the spatial
homogeneous sub-region individuation was investi-
gated by observing the L-CV1 mean spatial-temporal

14

Fig. 1 - Comparison between record length in VAPI study (1928-
1981) and the present upgrade (1928-1998).

Fig. 2 - g and t3 empirical means, sample size weighted, for
t=1÷24 hours and n≥30.

TABLE 1 - H3 test for duration 1÷24 hours.

Duration t [hours]Parent

Kappa 1 3 6 12 24

H3 test 0.10 1.07 -0.08 -1.05 0.14

Fig. 3 - L-CV1 mean, sample size weighted, for t=1÷24 hours and
n≥20.
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invariance, where L-CV1 is the L-CV of ordinary
component. The L-CV1 value was sample size
weighted, for n≥20 [9]. Regarding temporal depend-
ence figure 3 suggested a different behavior for
t=3÷24 hours and for t=1 hour.

This evidence suggested to subdivide the whole
sample into two different data sets, one for t=1 hour
and another one for t=3÷24 hours. For each data set
the spatial homogeneous sub-region individuation
was detected using the “k-means” method. This clas-
sification method, like the one-way analysis of vari-
ance, subdivides a set of objects in a fixed number of
groups, maximizing the standard deviation between
groups rather than inside groups.

Each site was characterized by its own L-CV1 and
U.T.M. coordinates, normalized on its own range.

For both t=1 hour and t=3÷24 hours sample, the
analysis let to find two sub-regions, not coincident. To
validate these classifications the not-parametric
Kruskal-Wallis test was applied to L-CV1 samples of
the two sub-regions individuated for both t=1 hour
and t=3÷24 hours. 

The test, that verifies the null hypothesis H0 of
identical L-CV1 distributions against the alternative
hypothesis H1 of different L-CV1 distributions,
showed the following results (table 2):
• for t=1 hour the hypothesis H0 (sample L-CV1

identical distribution) was accepted (p-value
=0.393), indicating a single sub-region; 

• for t=3÷24 hours the hypothesis H0 (sample L-CV1
identical distribution) was rejected (p-value <0.001)
indicating two different sub-regions (figure 4).

From this statistic evidence the following homoge-
neous sub-regions in L-CV1 were individuated:
• one sub-region coincident with the whole Sicily,

for t=1 hour;
• two sub-regions, called sub-region 1 and sub-re-

gion 2, for t=3÷24 hours (figure 4).
The regional parameter ll was calculated by L-CV1

spatial mean, inverting the following theoretical rela-
tionship:

(14)

For each duration and sub-region, ll results as fol-
lows: 

• t = 1 hour: 
l1 = 14.65 (all Sicily)

• t = 3÷24 hours:
l1 = 24.57 (sub-region 1)
l1 = 18.03 (sub-region 2)

Now, considering that , the growth curve

obtained inverting the equation (3), are:

• t = 1 hour: 
x(T)=0.256+1.306 log T (15’)

• t = 3÷24 hours:
Sub-region 1: 

x(T)=0.309+1.174 log T (15’’)
Sub-region 2: 

x(T)=0.278+1.250 log T (15’’’)

The equations (15)2 gives a quantile estimation
slightly greater than the last pluviometric Sicilian
study [5] for each duration t (+2 ÷10%). 

At the third level of regionalization, it was neces-
sary to estimate the index value, that, in this case, was
the theoretical TCEV law mean, m. By the substantial
equality of empirical average mc and m, mc was as-
sumed as the index value.

To calculate mc at ungaged sites or at sites with
short sample size, under the hypothesis of the well-
known pluviometric probability curve validity:

mc=atn (16)

it was sufficient to know the parameters a and n.
These parameters, estimated for all 235 sites, were

15

TABLE 2 - p-value related to Mann-Whitney test.

Duration [hours] p-value

Number of

identified sub-

regions

1 0.393 1

3, 6, 12, 24 <0.001 2

Fig. 4 - Sub-regions 1 and 2, homogeneus in L-CV1, for t=3÷24
hours.

___________
2 In the applications, for 1<t<3 hours, x(T) can be estimated by

linear interpolation between x(T) from eq. (15’) and x(T) from eq.
(15’’) if the site falls in sub-region 1 and between eq. (15’) and eq.
(15’’’) if the site falls in sub-region 2.
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spatially interpolated through the exponential kriging
method. In figure 5 and 6 the iso-a and iso-n curve for
Sicily are showed.

The mc estimation with iso-a and iso-n maps in-
volves an error. To evaluate this error, the normalized
error (ne) of mc was used: 

ne(mc)=(m̂c – m· c)/m
·

c (17)

where m̂c is calculated from the equation (16) with a
and n obtained by maps in figures 5 and 6 and m· c is
the historical series mean. In table 3, for each t, mean
and standard deviation of (ne)mc, valuated for 235
sites, are showed. In the same table it is possible to
observe that m̂c slightly overestimates m· c.

3.3 LM model

In order to obtain a good estimation of the L-mo-
ments ratio t3 and t4, the samples with n≥30 were
considered. As a consequence the sites analyzed were
109 in the whole Sicily, with a sample size mean
equal to 41.2.

The discordancy measure identified only 5 samples
with D≥3 for each duration t. The analysis of these
discordant series showed the presence of outliers in
these sites; thus, all stations were considered in the
analysis.

In the second step of the procedure, the test H1 was
used to verify the homogeneity of the Sicilian region.

The results of the H1 statistic, showed in table 4,
indicated a region acceptably homogeneous for t=1
hour and possibly heterogeneous for t=3÷24 hours.

As already mentioned a moderated heterogeneity
(1≤H1<2) yields a quantile estimation much more ac-
curate than the at-site estimation and only for H>2 it
is convenient to redefine the region studied [13]. For
these reasons Sicily was considered a unique homoge-
neous region for all durations. 

Moreover, the value of H1=-0.30 for t=1 hour
(table 4) indicates a positive correlation between the
data values at different sites. 

The choice of a distribution for the whole Sicily
and for each duration was previously made by using
the L-moments ratio diagram (t3,t4). 

Figure 7 shows the pairs (t3
R, t4

R) for each dura-
tion, where t3

R and t4
R are respectively the t3 and t4

regional weighted mean of the observed data, and the
t4(t3) of theoretical probability distributions GEV,

16

Fig. 5 - Iso-a map (equation (16)).

Fig. 6 - Iso-n map (equation (16)).

TABLE 3 - Mean and standard deviation (s.d.) of  ne(mc),
where ne(mc) is the normalized error of mc, obtained by using
iso-a and iso-n maps and for duration t=1÷24 hours.

Duration t [hours]

1 3 6 12 24

 )m(ne c  [%] 2.24 1.37 1.26 1.32 3.33

s.d. )]m(ne[ c [%] 13.80 13.41 13.94 14.84 16.03

TABLE 4 - H1 test for duration 1÷24 hours.

Duration t [hours]

1 3 6 12 24

H1 test -0.30 1.97 1.91 1.96 1.82

Fig. 7 - L-moments ratio diagram (t3,t4).
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GLO, GPA, LN3 e PE3. The closeness of the regional
pairs (t3

R, t4
R) to a given distribution gives a visual

indication of the distribution expected to have a good
fit of the sample. Looking figure 7, GEV and LN3
distribution are expected to have a good fit of the ob-
served data.

This indication was validated by the test Z [13].
The results, reported in table 5, indicate the accepta-
tion of GEV distribution for t=3÷24 hours and LN3 for
t=1, 12, 24 hours (bold character in table 5), as previ-
ously showed in the L-moments ratio diagram (t3,t4).

Considering that GEV distribution provided the
best fit of the data for t=3÷24 hours and for t=1 hours
the Z value (2.03) was not so far from the critical val-
ue 1.64, the GEV law was chosen as the probability
distribution for each duration.

The GEV distribution expression is: 

F(x) = exp{–[1–k(x–x)/a]l/k} for k≠0 (18)

where x is the location parameter, a is the scale pa-
rameter and k is the shape parameter. For the estima-
tion of the parameters x, a and k Hosking developed
the following approximation [13]: 

(19)

where l1, l2 and t3 are the weighted regional LM.
The estimated parameters are reported in table 6.
For t=1 hour k was near to 0, indicating, for this

duration, a good fit to the Gumbel distribution. 

Furthermore it was observed that, except for t=1
hour, the parameters a and k were approximately con-
stant. Therefore a unique GEV distribution for t=3÷24
hours was adopted, with x, a and k equal to the aver-
age of the values xi, ai and ki for i=3, 6, 12, 24 hours.

The expression of the GEV quantile x(F) is:

(20)

where .

Thus, the growth curves x(T), called GEV-LM, are:
• t = 1 hour:

(21’)

• t = 3÷24 hours:

(21’’)

The estimation of the variable X(T) can be derived
by equation (1), where the growth curve is expressed
by (21’) or (21’’), respectively for t=1 hour and
t=3÷24 hours, and the index flood is the at-site rain-
fall mean. In ungaged sites the scale factor may be
calculated with the equation (16), with a and n ob-
tained by the iso-a and iso-n maps (figures 5 and 6).

3.4 MGs model

The link between g and CV empirical series for all
durations was observed for Sicily (figure 8), assuming
the following expression:

g = 4.58CV – 0.82 (22)

This observation confirmed the remark of Maione
et al. [16, 17], justifying the adoption of their para-
metric model. The further observations that the values
XMax/s, obtained by normalizing the maximum values
of sample series, XMax, respect to the standard devia-
tion s of its series, were independent by CV (figure
9), led to the simpler MGs parametric model.

17

TABLE 5 - Z test for GEV, GLO, GPA, LN3 and PE3 dis-
tribution, for duration 1÷24 hours.

Duration t [hours]

1 3 6 12 24

GLO 7.13 4.21 3.29 5.35 4.91

GEV 2.03 0.21 -0.63 1.04 1.16

GPA -9.85 -9.60 -10.28 -9.34 -8.10

LN3 0.43 -1.81 -2.68 -0.85 -0.88

PE3 -2.65 -5.42 -6.30 -4.27 -4.49

Fig. 8 - Relationship g (CV) for historical rainfall series of dura-
tion t=1÷24 hours.

TABLE 6 - GEV distribution parameters for duration 1÷24
hours.

Duration t [hours]

Parameters 1 3 6 12 24

ε  0.784  0.780  0.784  0.789  0.774

α  0.329  0.303  0.296  0.300  0.306

k -0.076 -0.132 -0.135 -0.114 -0.141
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Following the procedure introduced by Maione et
al. [16, 17], (par. 2.3) Nmed is 29 and Nel is 235.

For range T=30÷900 years, the pairs (T, XMax/s),
with T derived by (11), plotted in a semi-logarithmic
diagram, indicate a good fit to the following linear
equation (figures 10):

(23)

where values c and b for duration t=1÷24 hours are
reported in table 7. It was possible to observe that the
parameters c and b are substantially constant for
t=1÷12 hours range. Therefore, the constant values
c=3.23 and b=0.509 were assumed for t=1÷12 hours,
while it was maintained c=2.80 and b=0.614 for t=24
hours3. 

So the quantile function became, respectively:

for t=1÷12 hours

(24’)

for t=24 hours

(24’’)

To verify the hypotheses that support the MGs
model, a comparison between the X/s normalized

quantile, obtained by GEV (assumed as parent distri-
bution), and the MGs model here derived, was estab-
lished.

For T=200 years, in figure 13 are reported:
Ö the pairs (X/s, CV), obtained by GEV with param-

eters computed satisfying the empirical link (10)
(GEV points);

Ö the two MGs laws, expressed by equations (24),
that obviously are horizontal straight lines.
Figure 11 shows that, assuming GEV law as parent

distribution, the quantile X/s is independent from CV
and, according to equation (22), from g. In addition,
the MGs laws overlap GEV points representing the
Sicilian extreme rainfall sample, showing a good fit to
Sicilian data. 

To estimate Xt,T with equations (24) in a generic
site, it was necessary to know or to estimate the at-site
st value. To calculate st at ungaged sites or at sites
with short record, it is usual to recur to regression

18

Fig. 9 - Dispersion of pairs (CV, Xmax/s) for duration t=1÷24
hours.

Fig. 10a - Dispersion of pairs (T, X/s) for duration t=1 hour.

Fig. 10b - Dispersion of pairs (T, X/s) for duration t=24 hours.

___________
3 In the applications, for 12<t<24 hours, x(T) can be estimated

by linear interpolation between x(T) from eq. (24’) and x(T) from eq.
(24’’).

TABLE 7 - c and b MGs parameters for duration t=1÷24
hours.

Duration [hours] c b

1 3.167 0.472

3 3.237 0.512

6 3.328 0.512

12 3.209 0.538

24 2.797 0.614

Fig. 11 - X/s quantile obtained by GEV (GEV points) and MGs
model quantile for t=1÷12 hours and t=24 hours.
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analysis using measurable parameters such as altitude,
longitude, latitude, distance of the site from the sea
and so on. Cause weak links found between st and ge-
ographic variables, we chose to interpolate the empiri-
cal value, ṡt , obtained in the 235 sites studied, with
exponential kriging technique and for all Sicily.

In figures 12 the five maps of iso-s for t=1, 3, 6,
12 and 24 hours are shown.

The st estimation through iso-s maps involves an
error, evaluated in normalized form as: 

ne(st) = (ŝt – s· t)/s
·

t (25)

where ne is the normalized error of st, ŝt is the stan-
dard deviation obtained by iso-s maps and s· t is the
historical series standard deviation.

In table 8, for each t, mean and standard deviation
of ne(st), evaluated for the 235 sites, are showed. Re-
sults show that ŝt slightly overestimates s· t(5÷11 %). 

Comparison between tables 3 and 8 shows that
mean and standard deviation of ne(st) are greater than
mean and standard deviation of ne(mc). In other
words, this comparison shows that the estimation of
mc by iso-a and iso-n maps is better than the estima-
tion of s by iso-s maps. This evidence has an impor-
tant effect on extreme rainfall estimation by regional
models based on this two different index values.
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Fig. 12a - Iso-s map for t=1 hour.

Fig. 12b - Iso-s map for t=3 hours.

Fig. 12c - Iso-s map for t=6 hours.

Fig. 12d - Iso-s map for t=12 hours.

Fig. 12e - Iso-s map for t=24 hours.

TABLE 8 - Mean and standard deviation (s.d.) of ne(st)
where ne(st) is the normalized error of st, obtained by using
iso-s maps and for duration t=1÷24 hours.

Duration t [hours]

1 3 6 12 24

 )(ne tσ  [%] 5.71 8.04 9.49 10.04 11.04

s.d. )](ne[ tσ  [%] 27.18 30.70 34.26 35.11 35.27
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Coming back to figures 12, it was observed that the
spatial distribution of s shows the same behavior for
every t: high and growing value in the oriental coast
of Sicily and in a center-southern limited area. This
fact suggested a scale behavior, expressed as follows:

(26)

where t* is the fixed duration and d·tf is the scale
function, with coefficients d and f. After deriving t*=6
hours as the smaller standard deviation error in the
range t=1÷24 hours, the parameter values were ob-
tained: d=0.61 and f=0.29. Therefore, the (26) rela-
tionship becomes:

st = 0.61 t 0.29 s6 (27)

where s6 is the standard deviation for t=6 hours.
Thus, it is possible to estimate s≥t by using equation

(27) and only the map of s6.
To evaluate the estimate error of (27), the follow-

ing normalized error (ne’) of st was used:

ne’(st) = (sŝ’t – s· t)/s
·

t (28)

where ŝ’t is obtained by equation (27) and s6 map.
In table 9, for each t, ne’(st) mean and standard de-

viation, valuated for the 235 sites, are showed. The
same table shows that sŝ’t overestimates st on average
by 10%. 

4. Regional models comparison

In order to establish the best predictive regional
model, the TCEV, GEV-LM and MGs regional esti-
mations were compared with the at-site estimation,
for the stations with record length n≥45. The return
period T was chosen equal to 200 years4 and the local
estimate was computed by GEV and Gumbel distribu-
tion with parameters obtained by weighted moment
method [16, 17]. 

The comparison was carried out examining, for the
regional models, the index value estimation in the two
following cases:
• Case 1: Index value estimated by historical series;
• Case 2: Index value estimated by regional interpo-

lated maps.

The first case explains the regional distribution
performance and the second one indicates the regional
model performance taking into account the index val-
ue estimation error. 

The regional models performance is described by
average (mne), standard deviation (sne), maximum
positive (maxpne) and maximum negative (maxnne) of
normalized error:

(29)

where Xreg is the precipitation obtained by regional
models and Xloc is the precipitation obtained by local
models (table 10).

Figures 13 and 14 show average (or bias) and stan-
dard deviation histograms of normalized error. 

Results show, in Case 1, a lower mne and sne using
MGs model than TCEV or GEV model, for each dura-
tion. 

In Case 2, results show, for t=1÷12 hours, a lower
mne using MGs model than TCEV or GEV model, but,
for t=24 hours, the three regional models perform
analogously. Instead, the sne is similar for the three
regional models studied, with a little advantage for
MGs model for t=1÷12 hours.

Comparing Case 1 and Case 2 we can observe that
the index value estimation error have an important ef-
fect on the extreme rainfall estimation. In fact, chang-
ing from Case 1 to Case 2, it is possible to notice that
MGs model sne grows up approaching the TCEV and
GEV model sne. As already told, this evidence is ex-
plained by the observation that st estimate error is
greater than mc estimate error. 

After all, we suggest the use of MGs model for
t=1÷12 hours, cause a lower mne and a little advantage
in term of sne using the latter model than TCEV or
GEV model. 

Instead for t=24 hours, the use of MGs, TCEV and
GEV regional models gives the same result.

Furthermore, we observe the same behavior for
TCEV and GEV-LM models, also detected by Brath
in center-northern Italy [4].

5. Conclusions

The present study concerned the regional frequen-
cy analysis of extreme rainfall in Sicily. In particular,
the TCEV regional model, proposed by Rossi et al.
[20] applied in Sicily in the VAPI Project (CNR), was
updated. The update allowed:
• to identify a single growth curve for all Sicily, for

t=1 hour;
• to identify the growth curves for two sub-regions,

for t=3÷24 hours.
The regional model based on linear moments [13]
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TABLE 9 - Mean and standard deviation (s.d.) of ne’(st),
where ne’(st) is the normalized error of st, obtained by using
iso-s6 map for t=6 hours and equation (27).

Duration t [hours]

1 3 6 12 24

 )('ne tσ  [%] 10.73 10.56 9.49 12.40 11.69

s.d. )]('ne[ tσ  [%] 32.32 31.89 34.26 38.11 39.59

___________
4 No evident trend was detected in Sicily for annual high inten-

sity rainfall [18].
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TABLE 10 - Normalized error statistics of (Xreg–Xloc), where Xreg and Xloc are respectively the regional and local estimates, for
duration t=1÷24 hours, T=200 years, sites with n≥45 and Case 1 and Case 2.

CASE 1 CASE 2 CASE 1 CASE 2 CASE 1 CASE 2 CASE 1 CASE 2 CASE 1 CASE 2 CASE 1 CASE 2

? ne (%) 9 11 22 24 1 2 10 11 22 24 0 2

 ? ne (%) 10 15 11 17 5 14 16 21 18 23 5 19

maxp ne (%) 34 48 49 65 15 36 45 60 62 78 11 47

maxn ne (%) -17 -9 -7 1 -13 -19 -29 -19 -21 -10 -12 -23

? ne (%) 17 15 17 16 0 2 19 18 19 18 2 4

 ? ne (%) 12 18 12 18 6 15 16 20 16 20 6 17

maxp ne (%) 42 66 39 62 15 40 56 71 59 67 15 44

maxn ne (%) -13 -23 -11 -21 -13 -23 -13 -23 -11 -21 -12 -23

? ne (%) 15 12 15 12 1 -2 12 8 12 9 -3 -5

 ? ne (%) 14 21 14 21 7 17 21 26 21 26 5 19

maxp ne (%) 41 60 44 64 20 38 52 72 55 76 6 48

maxn ne (%) -21 -32 -23 -34 -13 -42 -32 -42 -34 -43 -14 -50

? ne (%) 14 9 14 10 1 -3 16 11 16 11 3 -2

 ? ne (%) 15 23 14 23 8 21 17 24 16 24 7 21

maxp ne (%) 44 61 41 62 19 45 45 62 48 64 19 53

maxn ne (%) -19 -30 -21 -31 -14 -43 -19 -30 -21 -31 -14 -43

? ne (%) 10 6 10 6 6 -3 7 3 7 3 1 -6

 ? ne (%) 15 24 14 23 8 24 22 29 21 28 5 27

maxp ne (%) 49 68 46 64 28 47 57 75 54 71 12 46

maxn ne (%) -31 -34 -29 -33 -15 -43 -44 -46 -43 -45 -11 -52

GEV-LM TCEV MGs GEV-LM TCEV MGs 

GUMBEL (local estimate) GEVloc (local estimate)
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Fig. 13 - Comparison in term of mne between regional models (GEV-
LM, TCEV, MGs) and GEV local model for Case 1 (figure 13a) and
Case 2 (figure 13b) and for t=1÷24 hours.

Fig. 14  -  Comparison in term of sne between regional models (GEV-
LM, TCEV, MGs) and GEV local model for Case 1 (figure 14a) and
Case 2 (figure 14b) and for t=1÷24 hours.
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allowed the identification of the GEV as the regional
probability distribution and the individuation of two
growth curves valid in all Sicily dependent on duration
t: one for t=1 hour and another one for t=3÷24 hours.

The adoption of the regional parametric model in-
troduced by Maione et al. [16, 17] allowed to identify
a growth curve for t=1÷12 hours and another one for
t=24 hours, valid in all Sicily.

At gauged sites the index value (mean of the plu-
viometric variable for TCEV and GEV regional mod-
el and standard deviation of the pluviometric variable
for MGs model) can be estimated by historical series,
while, in ungaged site, the index term can be evaluat-
ed by using interpolated maps.

The three model regional estimations were com-
pared with the at-site estimation, computed by GEV
and Gumbel distribution, for the stations with record
length n≥45 and return period T =200 years.

The comparison was carried out taking into consid-
eration, for the regional models, the index value esti-
mation in the two following cases:
• Case 1: Index value estimated by historical series;
• Case 2: Index value estimated by regional maps.

The results indicate that, in Case 1, the MGs re-
gional model performs better than the other two re-
gional models for each duration t but, in Case 2, the
performance of MGs model is slightly better than the
other regional models studied only for t=1÷12 hours. 

Furthermore, we observe the same behavior for
TCEV and GEV-LM models, also detected by Brath
in center-northern Italy [4].
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SUMMARY

The study regarded the regional frequency analysis
of extreme rainfall in Sicily, using rainfall annual
maximum series of duration 1, 3, 6, 12 and 24 hours
in 235 sites, stationed in all Sicily and for the period
1928-1998.

The applied regional models, after the appropriate
verifications, were: the TCEV hierarchical model
(Rossi et al.), the model based on the use of the linear
moments LM (Hosking et al.) and the MGs paramet-
ric model (Maione et al.).

For ungaged sites, as in a flood index approach, the
index value of each model was evaluated through
maps derived from spatial interpolation.

The three models regional estimations were com-
pared with the at-site estimation, computed by GEV
and Gumbel distribution, for the stations with record
length n≥45 and return period T =200 years.

The comparison was carried out taking into consid-
eration, for the regional models, the index value esti-
mation in the two following cases:
• Case 1: Index value estimated by historical series;
• Case 2: Index value estimated by interpolated

maps.
The results indicate that, in Case 1, the MGs re-

gional model performs better than the other two re-
gional models for each duration t but, in Case 2, the
performance of MGs model is weakly better than the
other regional models studied only for t=1÷12 hours. 

Furthermore, we observe the same behavior of
TCEV and GEV-LM models, also detected by Brath
in center-northern Italy [4].

Key words: rainfall, regional model, MGs, TCEV,
L-moments. 

Appendix
Example of extreme rainfall calculation

In this appendix it is estimated the extreme rainfall
value Xt,T with the three regional models illustrated in
this paper in an ungaged site called “P” (U.T.M. coor-
dinates: Lon East = 375.000 m and Lat North =
4.200.000 m,) for durations t1=4.5 hours and t2=18
hours and return period T=50 years.

The three regional estimates are compared with the
local estimations, computed by using Gumbel distri-
bution, in the nearby Ciminna station (UTM coordi-
nates: Lon East= 373.384 m and Lat North =
4.194.980 m).

TCEV model
Falling P in sub-region 1 (figure 4) and being t≥3,

the growth factor x(T) is (eq. 15’’):
x(T) = 0.309 + 1.174 log T = 
= 0.309 + 1.174 log (50) = 2.30
by maps in figures 5 and 6:
a = 26 mm ; n = 0.28

t1=4.5 hours
mc = a tn = 26 * 4.50,28 = 39.62 mm
Xt=4.5,T=50 = x(T) * mc = 2.30 * 39.62 = 91.13 mm

t2=18 hours
mc = a tn = 26 * 180,28 = 58.40 mm
Xt=18,T=50 = x(T) * mc = 2.30 * 58.40 = 134.32 mm

GEV-LM model
t1=4.5 hours
Because t≥3, the growth factor x(T) is (eq. 21’’):

mc = a tn = 26 * 4.50,28 = 39.62 mm
Xt=4.5,T=50 = x(T) * mc = 2.32 * 39.62 = 91.92 mm

t2=18 hours
mc = a tn = 26 * 180,28 = 58.40 mm
Xt=18,T=50 = x(T) * mc = 2.32 * 58.40 = 135.49 mm

MGs model
t1=4.5 hours
st=4.5 is evaluated by equation (27), where st=6 is

estimated by figure 12c:
s6 = 15 mm 
st=4.5 = 0.61 t 0.29 s6 = 0.61 * 4.50.29 * 15 = 14.15 mm
Because t≤12, it is used the equation (24’):

t2=18 hours
st=18 is evaluated by equation (27), where st=6 is

estimated by figure 12c:
s6 = 15 mm 
st=18= 0.61 t 0.29 s6= 0.61 * 180.29 * 15= 21.16 mm
Because 12<t<24, Xt,T is evaluated by linear inter-

polation between eq. (24’) and eq. (24’’):

Local estimate at Ciminna Station
By Gumbel law application to Ciminna station ex-

treme rainfall data (duration t = 1, 3, 6, 12, 24 hours;
record length equal to 48), Xt,T results: 

Xt=4.5,T=50 = 72.16 mm
Xt=18,T=50 = 115.60 mm
By comparing this local estimation against regional

ones it is noticed that MGs model performs better
than TCEV or GEV-LM model. Furthermore, TCEV
and GEV-LM model perform analogously.
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