In-field hyperspectral imaging: An overview on the ground-based applications in agriculture

Abstract

The measurement of vegetation indexes that characterise the plants growth, assessing the fruit ripeness or detecting the presence of defects and diseases, is a key factor to gain high quality of fruit or vegetables. Such evaluation can be carried out using both destructive and non destructive techniques. Among non-destructive techniques, hyperspectral imaging (HSI), combining image analysis and visible/near-infrared spectroscopy, looks particularly useful. Many studies have been published concerning the use of hyperspectral cameras in the agronomic and food field, especially in controlled laboratory conditions. Conversely, few studies described the application of HSI technology directly in field, especially involving ground-based systems. Results suggest that this technique could be particularly useful, even if the role of environmental variables has to be considered (e.g., intensity and incidence of solar radiation, wind or the soil in the background). In this paper, recent in-field HSI applications based on ground systems are reviewed.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Al Makdessi, N., Jean, P.A., Ecarnot, M., Gorretta, N., Rabatel, G., Roumet, P., 2017. How plant structure impacts the biochemical leaf traits assessment from in-field hyperspectral images: A simulation study based on light propagation modeling in 3D virtual wheat scenes. F. Crop. Res. 205, 95–105. https://doi.org/10.1016/j.fcr.2017.02.001 DOI: https://doi.org/10.1016/j.fcr.2017.02.001

Chen, W., Li, H., Niu, Q., Hongnan, H., 2017. Hyperspectral image segmentation for maize stubble in no-till field, in: 2017 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, p. 6. https://doi.org/10.13031/aim.201700963 DOI: https://doi.org/10.13031/aim.201700963

Deery, D., Jimenez-Berni, J., Jones, H., Sirault, X., Furbank, R., 2014. Proximal Remote Sensing Buggies and Potential Applications for Field-Based Phenotyping. Agronomy 4, 349–379. https://doi.org/10.3390/agronomy4030349 DOI: https://doi.org/10.3390/agronomy4030349

ElMasry, G., Kamruzzaman, M., Sun, D.W., Allen, P., 2012. Principles and Applications of Hyperspectral Imaging in Quality Evaluation of Agro-Food Products: A Review. Crit. Rev. Food Sci. Nutr. 52, 999–1023. https://doi.org/10.1080/10408398.2010.543495 DOI: https://doi.org/10.1080/10408398.2010.543495

ElMasry, G., Sun, D.W., 2010. Principles of Hyperspectral Imaging Technology, in: Hyperspectral Imaging for Food Quality Analysis and Control. https://doi.org/10.1016/B978-0-12-374753-2.10001-2 DOI: https://doi.org/10.1016/B978-0-12-374753-2.10001-2

FAO, 2017. Conservation Agriculture - Revised version. AG Dept factsheets.

Garini, Y., Young, I.T., McNamara, G., 2006. Spectral imaging: Principles and applications. Cytom. Part A 69A, 735–747. https://doi.org/10.1002/cyto.a.20311 DOI: https://doi.org/10.1002/cyto.a.20311

Goetz, A., Vane, G., Solomon, J., Rock, B.., 1985. Imaging Spectrometry for Earth Remote Sensing. Science (80-. ). 228, 1147–1153. https://doi.org/10.1126/science.228.4704.1147 DOI: https://doi.org/10.1126/science.228.4704.1147

Gutiérrez, S., Fernández-Novales, J., Diago, M.P., Tardaguila, J., 2018. On-The-Go Hyperspectral Imaging Under Field Conditions and Machine Learning for the Classification of Grapevine Varieties. Front. Plant Sci. 9, 1–11. https://doi.org/10.3389/fpls.2018.01102 DOI: https://doi.org/10.3389/fpls.2018.01102

Herrmann, I., Shapira, U., Kinast, S., Karnieli, A., Bonfil, D.J., 2013. Ground-level hyperspectral imagery for detecting weeds in wheat fields. Precis. Agric. 14, 637–659. https://doi.org/10.1007/s11119-013-9321-x DOI: https://doi.org/10.1007/s11119-013-9321-x

Huang, Y., Lee, M.A., Thomson, S.J., Reddy, K.N., 2016. Ground-based hyperspectral remote sensing for weed management in crop production. Int. J. Agric. Biol. Eng. 9, 98–109. https://doi.org/10.3965/j.ijabe.20160902.2137

Jay, S., Gorretta, N., Morel, J., Maupas, F., Bendoula, R., Rabatel, G., Dutartre, D., Comar, A., Baret, F., 2017. Estimating leaf chlorophyll content in sugar beet canopies using millimeter- to centimeter-scale reflectance imagery. Remote Sens. Environ. 198, 173–186. https://doi.org/10.1016/j.rse.2017.06.008 DOI: https://doi.org/10.1016/j.rse.2017.06.008

Jensen, J.R., 2014. Remote sensing of the environment: an earth resource perspective, 2nd ed, Pearson Education Limited.

Jiang, Y., Li, C., Robertson, J.S., Sun, S., Xu, R., Paterson, A.H., 2018. GPhenoVision: A ground mobile system with multi-modal imaging for field-based high throughput phenotyping of cotton, Scientific Reports. Springer US. https://doi.org/10.1038/s41598-018-19142-2 DOI: https://doi.org/10.1038/s41598-018-19142-2

Liu, D., Sun, D.-W., Zeng, X.-A., 2014. Recent Advances in Wavelength Selection Techniques for Hyperspectral Image Processing in the Food Industry. Food Bioprocess Technol. 7, 307–323. https://doi.org/10.1007/s11947-013-1193-6 DOI: https://doi.org/10.1007/s11947-013-1193-6

Liu, D., Zeng, X.A., Sun, D.W., 2015. Recent Developments and Applications of Hyperspectral Imaging for Quality Evaluation of Agricultural Products: A Review. Crit. Rev. Food Sci. Nutr. 55, 1744–1757. https://doi.org/10.1080/10408398.2013.777020 DOI: https://doi.org/10.1080/10408398.2013.777020

Lu, R., Park, B., 2015. Introduction, in: Hyperspectral Imaging Technology in Food and Agriculture. Springer, New York, NY, pp. 3–7. https://doi.org/10.1007/978-1-4939-2836-1_1 DOI: https://doi.org/10.1007/978-1-4939-2836-1_1

Ma, J., Sun, D.-W., Pu, H., Cheng, J.-H., Wei, Q., 2019. Advanced Techniques for Hyperspectral Imaging in the Food Industry: Principles and Recent Applications. Annu. Rev. Food Sci. Technol. 10, 197–220. https://doi.org/10.1146/annurev-food-032818-121155 DOI: https://doi.org/10.1146/annurev-food-032818-121155

Malenovský, Z., Turnbull, J.D., Lucieer, A., Robinson, S.A., 2015. Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. New Phytol. 208, 608–624. https://doi.org/10.1111/nph.13524 DOI: https://doi.org/10.1111/nph.13524

Mishra, P., Asaari, M.S.M., Herrero-Langreo, A., Lohumi, S., Diezma, B., Scheunders, P., 2017. Close range hyperspectral imaging of plants: A review. Biosyst. Eng. https://doi.org/10.1016/j.biosystemseng.2017.09.009 DOI: https://doi.org/10.1016/j.biosystemseng.2017.09.009

Onoyama, H., Ryu, C., Suguri, M., Iida, M., 2018. Estimation of rice protein content before harvest using ground-based hyperspectral imaging and region of interest analysis. Precis. Agric. 19, 721–734. https://doi.org/10.1007/s11119-017-9552-3 DOI: https://doi.org/10.1007/s11119-017-9552-3

Onoyama, H., Ryu, C., Suguri, M., Iida, M., 2015. Nitrogen prediction model of rice plant at panicle initiation stage using ground-based hyperspectral imaging: growing degree-days integrated model. Precis. Agric. 16, 558–570. https://doi.org/10.1007/s11119-015-9394-9 DOI: https://doi.org/10.1007/s11119-015-9394-9

Pantazi, X.E., Moshou, D., Bravo, C., 2016. Active learning system for weed species recognition based on hyperspectral sensing. Biosyst. Eng. 146, 193–202. https://doi.org/10.1016/j.biosystemseng.2016.01.014 DOI: https://doi.org/10.1016/j.biosystemseng.2016.01.014

Reddy, K.N., Huang, Y., Lee, M.A., Nandula, V.K., Fletcher, R.S., Thomson, S.J., Zhao, F., 2014. Glyphosate-resistant and glyphosate-susceptible Palmer amaranth (Amaranthus palmeri S. Wats.): Hyperspectral reflectance properties of plants and potential for classification. Pest Manag. Sci. 70, 1910–1917. https://doi.org/10.1002/ps.3755 DOI: https://doi.org/10.1002/ps.3755

Rinnan, Å., Berg, F. van den, Engelsen, S.B., 2009. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 28, 1201–1222. https://doi.org/10.1016/J.TRAC.2009.07.007 DOI: https://doi.org/10.1016/j.trac.2009.07.007

Rodriguez-Moreno, F., Zemek, F., Kren, J., Pikl, M., Lukas, V., Novak, J., 2016. Spectral monitoring of wheat canopy under uncontrolled conditions for decision making purposes. Comput. Electron. Agric. 125, 81–88. https://doi.org/10.1016/j.compag.2016.05.002 DOI: https://doi.org/10.1016/j.compag.2016.05.002

Römer, C., Wahabzada, M., Ballvora, A., Pinto, F., Rossini, M., Panigada, C., Behmann, J., Léon, J., Thurau, C., Bauckhage, C., Kersting, K., Rascher, U., Plümer, L., 2012. Early drought stress detection in cereals : simplex volume maximisation for hyperspectral image analysis. Funct. Plant Biol. 39, 878–890. https://doi.org/10.1071/FP12060 DOI: https://doi.org/10.1071/FP12060

Thomas, S., Kuska, M.T., Bohnenkamp, D., Brugger, A., Alisaac, E., Wahabzada, M., Behmann, J., Mahlein, A.K., 2018. Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective. J. Plant Dis. Prot. 125, 5–20. https://doi.org/10.1007/s41348-017-0124-6 DOI: https://doi.org/10.1007/s41348-017-0124-6

Underwood, J., Wendel, A., Schofield, B., McMurray, L., Kimber, R., 2017. Efficient in-field plant phenomics for row-crops with an autonomous ground vehicle. J. F. Robot. 34, 1061–1083. https://doi.org/10.1002/rob.21728 DOI: https://doi.org/10.1002/rob.21728

Vigneau, N., Ecarnot, M., Rabatel, G., Roumet, P., 2011. Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat. F. Crop. Res. 122, 25–31. https://doi.org/10.1016/j.fcr.2011.02.003 DOI: https://doi.org/10.1016/j.fcr.2011.02.003

Wang, B., Zhang, X., Dong, Y., Zhang, Jingwen, Zhang, Jingcheng, Zhou, X., 2018. Retrieval of Leaf Chlorophyll Content of Paddy Rice with Extracted Foliar Hyperspectral Imagery, in: 2018 7th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). IEEE, pp. 1–5. https://doi.org/10.1109/Agro-Geoinformatics.2018.8476024 DOI: https://doi.org/10.1109/Agro-Geoinformatics.2018.8476024

Wendel, A., Underwood, J., Walsh, K., 2018. Maturity estimation of mangoes using hyperspectral imaging from a ground based mobile platform. Comput. Electron. Agric. 155, 298–313. https://doi.org/10.1016/j.compag.2018.10.021 DOI: https://doi.org/10.1016/j.compag.2018.10.021

Whetton, R.L., Waine, T.W., Mouazen, A.M., 2018. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 2: On-line field measurement. Biosyst. Eng. 167, 144–158. https://doi.org/10.1016/j.biosystemseng.2018.01.004 DOI: https://doi.org/10.1016/j.biosystemseng.2018.01.004

Wu, Q., Wang, C., Fang, J.J., Ji, J.W., 2016. Field monitoring of wheat seedling stage with hyperspectral imaging. Int. J. Agric. Biol. Eng. 9, 143–148. https://doi.org/10.3965/j.ijabe.20160905.1707

Yoon, S.-C., Park, B., 2015. Hyperspectral Image Processing Methods. Springer, New York, NY, pp. 81–101. https://doi.org/10.1007/978-1-4939-2836-1_4 DOI: https://doi.org/10.1007/978-1-4939-2836-1_4

Zhao, J., Zhang, D., Huang, L., Zhang, Q., Liu, W., Yang, H., 2016. Vertical features of yellow rust infestation on winter wheat using hyperspectral imaging measurements. 2016 5th Int. Conf. Agro-Geoinformatics, Agro-Geoinformatics 2016 1–4. https://doi.org/10.1109/Agro-Geoinformatics.2016.7577620 DOI: https://doi.org/10.1109/Agro-Geoinformatics.2016.7577620

Published
2020-09-29
Info
Issue
Section
Review Articles
Keywords:
Hyperspectral, fruits, vegetables, in-field application, prediction, classification.
Statistics
  • Abstract views: 474

  • PDF: 316
  • HTML: 0
How to Cite
Benelli, A., Cevoli, C., & Fabbri, A. (2020). In-field hyperspectral imaging: An overview on the ground-based applications in agriculture. Journal of Agricultural Engineering, 51(3), 129-139. https://doi.org/10.4081/jae.2020.1030