Run duration effects on the hydrodynamic properties of a loam soil estimated by steady-state infiltration methods

Published:13 October 2020
Abstract Views: 1557
PDF: 449
HTML: 30
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Steady-state methods for the analysis of single-ring infiltration data are commonly applied. However, the duration of an infiltrometer experiment is often established quite subjectively based on the assumption that in general infiltration stabilizes rather quickly in the field. For a loam soil, the effect of the duration of a beerkan run on sorptivity, S, and saturated hydraulic conductivity, Ks, was tested by using the BEST (Beerkan Estimation of Soil Transfer parameters)-steady method and SSBI (Steady version of the Simplified method based on a Beerkan Infiltration run) method for data analysis. The standard experiment, based on a total of 15 water volumes each establishing an initial ponding depth of ~0.01 m (on average, 0.32 hours of infiltration), yielded approximately two and >100 times higher S and Ks values, respectively, than a long run (117 water volumes or 8.1 hours). Stabilization was faster for S (approximately in 3 hours) than Ks (6 hours). Similar Ks values were obtained with BEST-steady (192-261 mm/h) and the SSBI method (177-184 mm/h) for the standard run but not for the long-duration run (1.5-2.1 and 20-21 mm/h, respectively). This discrepancy was due to the fact that more information on the infiltration process is used by BEST-steady (total duration, total infiltrated water, steady-state infiltration rate) than the SSBI method (only the latter variable). In conclusion, Ks estimates are very sensitive to the used water volume for the run. The run duration should not only depend on the attainment of near steadiness, but also on the possibility of capturing the soil hydraulic behaviour in a representative situation for the hydrological process under study. In the near future, the possibility of using the hydrodynamic soil properties determined with the tested methodology to simulate rainfall effects on soil structure should be investigated.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Crossref
Scopus
Google Scholar
Europe PMC
Alagna V., Bagarello V., Di Prima S., Giordano G., Iovino M. 2016. Testing infiltration run effects on the estimated water transmission properties of a sandy-loam soil. Geoderma 267, 24-33. doi: 10.1016/j.geoderma.2015.12.029. DOI: https://doi.org/10.1016/j.geoderma.2015.12.029
Angulo-Jaramillo R., Bagarello V., Iovino M., Lassabatere L. 2016. Infiltration Measurements for Soil Hydraulic Characterization. Springer International Publishing, Switzerland, ISBN 978-3-319-31786-1, 978-3-319-31788-5 (eBook), doi: 10.1007/978-3-319-31788-5, 386 pp. DOI: https://doi.org/10.1007/978-3-319-31788-5
Angulo-Jaramillo R., Bagarello V., Di Prima S., Gosset A., Iovino M., Lassabatere L. 2019. Beerkan Estimation of Soil Transfer parameters (BEST) across soils and scales. Invited Review Paper, J. Hydrol. 576, 239-261. doi: 10.1016/j.jhydrol.2019.06.007. DOI: https://doi.org/10.1016/j.jhydrol.2019.06.007
Assouline S., Mualem Y. 2002. Infiltration during soil sealing: The effect of areal heterogeneity of soil hydraulic properties. Water Resour. Res. 38(12), 1286. doi: 10.1029/2001WR001168. DOI: https://doi.org/10.1029/2001WR001168
Auteri N., Bagarello V., Concialdi P., Iovino M. 2020. Testing an adapted beerkan infiltration run for a hydrologically relevant soil hydraulic characterization. J. Hydrol. 584, 12469714, 9 pp., doi: 10.1016/j.jhydrol.2020.124697. DOI: https://doi.org/10.1016/j.jhydrol.2020.124697
Bagarello V., Iovino M., Reynolds W.D. 1999. Measuring hydraulic conductivity in a cracking clay soil using the Guelph permeameter. T. ASAE 42(4), 957-964.
Bagarello V., Iovino M., Elrick D. 2004. A simplified falling-head technique for rapid determination of field-saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 68, 66-73.
Bagarello V., Di Prima S., Iovino M., Provenzano G., Sgroi A. 2011. Testing different approaches to characterize Burundian soils by the BEST procedure. Geoderma 162, 141-150. doi: 10.1016/j.geoderma.2011.01.014. DOI: https://doi.org/10.1016/j.geoderma.2011.01.014
Bagarello V., Giordano G., Sferlazza S., Sgroi A. 2011. Effects of laboratory procedures on the integrity of a sandy-loam soil sample for bi-directional measurement of saturated hydraulic conductivity. Appl. Eng. Agric. 27(3), 351-358.
Bagarello V., Di Stefano C., Iovino M., Sgroi A. 2013. Using a transient infiltrometric technique for intensively sampling field-saturated hydraulic conductivity of a clay soil in two runoff plots. Hydrol. Process. 27, 3415-3423. doi: 10.1002/hyp.9448. DOI: https://doi.org/10.1002/hyp.9448
Bagarello V., Di Prima S., Iovino M. 2014. Comparing alternative algorithms to analyze the beerkan infiltration experiment. Soil Sci. Soc. Am. J. 78, 724-736. doi: 10.2136/sssaj2013.06.0231. DOI: https://doi.org/10.2136/sssaj2013.06.0231
Bagarello V., Di Prima S., Iovino M. 2017. Estimating saturated soil hydraulic conductivity by the near steady-state phase of a Beerkan infiltration test. Geoderma 303, 70-77. doi: 10.1016/j.geoderma.2017.04.030. DOI: https://doi.org/10.1016/j.geoderma.2017.04.030
Ben-Hur M., Shainberg I., Morin J. 1987. Variability of infiltration in a field with surface-sealed soil. Soil Sci. Soc. Am. J. 51, 1299-1302.
Bouma J. 1982. Measuring the hydraulic conductivity of soil horizons with continuous macropores. Soil Sci. Soc. Am. J. 46, 438-441.
Brooks R.H., Corey A.T. 1964. Hydraulic properties of porous media. Hydrology Paper 3, Colorado State University, Fort Collins.
Ciollaro G., Lamaddalena N. 1998. Effect of tillage on the hydraulic properties of a vertic soil. J. Agr. Eng. Res. 71, 147-155.
Dikinya O., Hinz C., Aylmore G. 2008. Decrease in hydraulic conductivity and particle release associated with self-filtration in saturated soil columns. Geoderma 146(1-2), 192-200, doi: 10.1016/j.geoderma.2008.05.014. DOI: https://doi.org/10.1016/j.geoderma.2008.05.014
Di Prima S., Lassabatere L., Bagarello V., Iovino M., Angulo-Jaramillo R. 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma 262, 20-34, doi: 10.1016/j.geoderma.2015.08.006. DOI: https://doi.org/10.1016/j.geoderma.2015.08.006
Di Prima S., Concialdi P., Lassabatere L., Angulo-Jaramillo R., Pirastru M., Cerdà A., Keesstra S. 2018a. Laboratory testing of Beerkan infiltration experiments for assessing the role of soil sealing on water infiltration. Catena 167, 373–384, doi: 10.1016/j.catena.2018.05.013. DOI: https://doi.org/10.1016/j.catena.2018.05.013
Di Prima S., Marrosu R., Lassabatere L., Angulo-Jaramillo R., Pirastru M. 2018b. In situ characterization of preferential flow by combining plot- and point-scale infiltration experiments on a hillslope. J. Hydrol. 563, 633-642.
Dohnal M., Vogel T., Dusek J., Votrubova J., Tesar M. 2016. Interpretation of ponded infiltration data using numerical experiments. J. Hydrol. Hydromech. 64(3), 289-299.
Elrick D.E., Reynolds W.D. 1992a. Methods for analyzing constant-head well permeameter data. Soil Sci. Soc. Am. J. 56, 320-323.
Elrick D.E., Reynolds W.D. 1992b. Infiltration from constant-head well permeameters and infiltrometers. p.1-24. In G.C. Topp, W.D. Reynolds and R.E. Green (eds.), Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice, SSSA Special Publication no.30, Madison, WI, USA. DOI: https://doi.org/10.2136/sssaspecpub30.c1
Glantz S.A. 2012. Primer of Biostatistics. 7th edition. The McGraw-Hill Companies.
Gómez J.A., Vanderlinden K., Nearing M.A. 2005. Spatial variability of surface roughness and hydraulic conductivity after disk tillage: implications for runoff variability. J. Hydrol. 311, 143-156. DOI: https://doi.org/10.1016/j.jhydrol.2005.01.014
Hillel D. 1998. Environmental soil physics. Academic Press, San Diego, 771 pp.
Jabro J.D., Evans R.G. 2006. Discrepancies between analytical solutions of two borehole permeameters for estimating field-saturated hydraulic conductivity. Appl. Eng. Agric. 22(4), 549-554.
Jarvis N., Koestel J., Messing I., Moeys J., Lindahl A. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 17, 5185-5195.
Kutílek M., Jendele L., Panayiotopoulos K.P. 2006. The influence of uniaxial compression upon pore size distribution in bi-modal soils. Soil Till. Res. 86(1), 27-37.
Lai J., Ren L. 2007. Assessing the size dependency of measured hydraulic conductivity using double-ring infiltrometers and numerical simulation. Soil Sci. Soc. Am. J. 71, 1667-1675.
Lassabatere L., Angulo-Jaramillo R., Soria Ugalde J.M., Cuenca R., Braud I., Haverkamp R. 2006. Beerkan estimation of soil transfer parameters through infiltration experiments – BEST. Soil Sci. Soc. Am. J. 70, 521-532. doi: 10.2136/sssaj2005.0026. DOI: https://doi.org/10.2136/sssaj2005.0026
Lassabatere L., Di Prima S., Angulo-Jaramillo R., Keesstra S., Salesa D. 2019. Beerkan multi-runs for characterizing water infiltration and spatial variability of soil hydraulic properties across scales. Hydrolog. Sci. J. 64(2), 165-178. doi: 10.1080/02626667.2018.1560448. DOI: https://doi.org/10.1080/02626667.2018.1560448
Le Bissonnais Y. 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 47, 425-437.
Lilliefors H.W. 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62(318), 399-402. doi: 10.1080/01621459.1967.10482916. DOI: https://doi.org/10.1080/01621459.1967.10482916
Lozano-Baez S.E., Cooper M., Ferraz S.F.B., Rodrigues R.R., Pirastru M., Di Prima S. 2018. Previous land use affects the recovery of soil hydraulic properties after forest restoration. Water 10(4), 453, https://doi.org/10.3390/w10040453. DOI: https://doi.org/10.3390/w10040453
Mubarak I., Mailhol J.C., Angulo-Jaramillo R., Ruelle P., Boivin P., Khaledian M. 2009. Temporal variability in soil hydraulic properties under drip irrigation. Geoderma 150, 158-165.
Mubarak I., Angulo-Jaramillo R., Mailhol J.C., Ruelle P., Khaledian M., Vauclin M. 2010. Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agr. Water Manag. 97, 1517-1526.
Papanicolau A.N., Elhakeem M., Wilson C.G., Burras C.L., West L.T., Lin H., Clark B., Oneal B.E. 2015. Spatial variability of saturated hydraulic conductivity at the hillslope scale: Understanding the role of land management and erosional effect. Geoderma 243-244, 58-68. doi: 10.1016/j.geoderma.2014.12.010. DOI: https://doi.org/10.1016/j.geoderma.2014.12.010
Philip J.R. 1969. Theory of infiltration. Adv. Hydrosci. 5, 215-296.
Price A.G., Bauer B.O. 1984. Small-scale heterogeneity and soil-moisture variability in the unsaturated zone. J. Hydrol. 70(1-4), 277-293.
Ramos M.C., Nacci S., Pla I. 2000. Soil sealing and its influence on erosion rates for some soils in the Mediterranean area. Soil Sci. 165(5), 398-403.
Reynolds W.D. 2008. Chapter 77. Saturated hydraulic properties: ring infiltrometer. p.1043-1056 in Carter M.R. and Gregorich E.G. (eds.), Soil Sampling and Methods of Analysis, 2nd edition. Canadian Society of Soil Science, Boca Raton, FL, USA. DOI: https://doi.org/10.1201/9781420005271.ch77
Reynolds W.D. 2013. An assessment of borehole infiltration analyses for measuring field-saturated hydraulic conductivity in the vadose zone. Eng. Geol. 159, 119-130. doi: 10.1016/j.enggeo.2013.02.006. DOI: https://doi.org/10.1016/j.enggeo.2013.02.006
Reynolds W.D., Bowman B.T., Brunke R.R., Drury C.F., Tan C.S. 2000. Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 64, 478-484.
Reynolds W.D., Elrick D.E., Youngs E.G. 2002. 3.4.3.2.a Single-ring and double- or concentric-ring infiltrometers. p.821-826. In J.H. Dane and G.C. Topp (co-eds.), Methods of Soil Analysis, Part 4, Physical Methods, Number 5 in the Soil Science Society of America Book Series, Soil Science Society of America, Inc., Madison, WI, USA.
Somaratne N.M., Smettem K.R.J. 1993. Effect of cultivation and raindrop impact on the surface properties of an Alfisol under wheat. Soil Till. Res. 26, 115-125.
Stewart R.D., Najm M.R.A. 2018. A Comprehensive Model for Single Ring Infiltration I: Initial Water Content and Soil Hydraulic Properties. Soil Sci. Soc. Am. J. 82, 548-557, doi:10.2136/sssaj2017.09.0313. DOI: https://doi.org/10.2136/sssaj2017.09.0313
Talsma T., Lelij A.V.D. 1976. Infiltration and water movement in an in situ swelling soil during prolonged ponding. Aust. J. Soil Res. 14(3), 337-349.
Vandervaere J.P., Vauclin M., Elrick D.E., 2000. Transient flow from tension infiltrometers: I. The two-parameter equation. Soil Sci. Soc. Am. J. 64, 1263-1272. DOI: https://doi.org/10.2136/sssaj2000.6441263x
Verbist K., Torfs S., Cornelis W.M., Oyarzún R., Soto G., Gabriels D. 2010. Comparison of single- and double-ring infiltrometer methods on stony soils. Vadose Zone J. 9, 462-475.
Wu L., Pan L., Roberson M.J., Shouse P.J. 1997. Numerical evaluation of ring-infiltrometers under various soil conditions. Soil Sci. 162(11), 771-777.
Wu L., Pan L., Mitchell J., Sanden B. 1999. Measuring saturated hydraulic conductivity using a generalized solution for single-ring infiltrometers. Soil Sci. Soc. Am. J. 63, 788-792.
Yilmaz D., Lassabatere L., Angulo-Jaramillo R., Deneele D., Legret M. 2010. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone J. 9, 1-10.

How to Cite

Bagarello, V. and David, S. M. (2020) “Run duration effects on the hydrodynamic properties of a loam soil estimated by steady-state infiltration methods”, Journal of Agricultural Engineering, 51(4), pp. 229–238. doi: 10.4081/jae.2020.1075.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.