A non-destructive method for monitoring the ripening of tomatoes based on their induction of chlorophyll fluorescence

  • Mahmoud A. Abdelhamid | mahmoudabdelhamid@agr.asu.edu.eg Agriculture Engineering Department, Faculty of Agriculture, Ain Shams University, Egypt; Institute of Engineering and Energy, Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation. https://orcid.org/0000-0002-0709-1836
  • Yuri Sudnik Institute of Engineering and Energy, Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation.
  • Haider J. Alshinayyin Ministry of Agriculture, Teheran, Iraq. https://orcid.org/0000-0001-6346-2155
  • Fatma Shaaban Agriculture Engineering Department, Faculty of Agriculture, Ain Shams University, Egypt.


Maturity is one of the most important factors associated with assessing the quality of tomatoes. The aim of this study is to develop a new device to measure the degree of ripeness of tomato fruits based on chlorophyll fluorescence. The results of this method, chlorophyll fluorescence, were compared with those of the widely used colorimeter for this purpose. Botanical variety of tomatoes “Alkazar” was used with different stages of maturity: green, breakers, turning, pink, light red, and red. The results indicated that specific parameters of the slow induction of chlorophyll fluorescence, such as the maximum chlorophyll fluorescence (Fm) and the coefficient of specific photosynthetic activity (Rfd), can be used to classify tomato fruits according to their maturity stage, as efficiently as the hue angle parameter of the color measurements. A correlation coefficient between the hue angle and the slow induction of chlorophyll fluorescence parameters was 0.96 with Fm, and 0.97 with Rfd. Using the hue angle or Fm, the fruits of all six-maturity stages were accurately classified. In conclusion, the developed device method is a non-destructive, innovative, convenient, and less time-consuming than the color-based method.



PlumX Metrics


Download data is not yet available.


Agati G., D’Onofrio C., Ducci E., Cuzzola A., Remorini D., Tuccio L. 2013. Potential of a multiparametric optical sensor for determining in situ the maturity components of red and white Vitis vinifera wine grapes. J. Agric. Food Chem. 61:12211-8. DOI: https://doi.org/10.1021/jf405099n

Arias R., Lee T.C., Logendra L., Janes H. 2000. Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agric. Food Chem. 48:1697-702. DOI: https://doi.org/10.1021/jf990974e

Betemps D.L., Fachinello J.C., Galarça S.P., Portela N.M., Remorini D., Massai R. 2012. Non‐destructive evaluation of ripening and quality traits in apples using a multiparametric fluorescence sensor. J. Sci. Food Agric. 92:1855-64. DOI: https://doi.org/10.1002/jsfa.5552

Bramley P.M. 2002. Regulation of carotenoid formation during tomato fruit ripening and development. J. Exper. Botany. 53:2107-13. DOI: https://doi.org/10.1093/jxb/erf059

Cerovic Z.G., Goutouly J.-P., Hilbert G., Destrac-Irvine A., Martinon V., Moise N. 2009. Mapping winegrape quality attributes using portable fluorescence-based sensors. Frutic. 9:301-10.

Chang C.-H., Lin H.-Y., Chang C.-Y., Liu Y.-C. 2006. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J. Food Engine. 77:478-85. DOI: https://doi.org/10.1016/j.jfoodeng.2005.06.061

Choi K., Lee G., Han Y., Bunn J. 1995. Tomato maturity evaluation using color image analysis. Trans. ASAE. 38:171-6. DOI: https://doi.org/10.13031/2013.27827

DeEll J.R., Toivonen P.M.A. 2003. Use of chlorophyll fluorescence in postharvest quality assessments of fruits and vegetables. pp 203-242 in: J.R. DeEll, P.M.A. Toivonen (Eds.), Practical applications of chlorophyll fluorescence in plant biology. Springer, Boston, MA, USA. DOI: https://doi.org/10.1007/978-1-4615-0415-3_7

Gedamu A.G. 2008. Non-destructive (laser induced chlorophyll fluorescence) technique for determining tissue integrity in tomato (Lycopersicon esculentum Mill.). Degree Diss., Universiteit Gent.

Geyer L.H., Perry R.F. 1982. Variation in detectability of multiple flaws with allowed inspection time. Human Factors. 24:361-5. DOI: https://doi.org/10.1177/001872088202400311

Ghozlen N.B., Cerovic Z.G., Germain C., Toutain S., Latouche G. 2010. Non-destructive optical monitoring of grape maturation by proximal sensing. Sensors. 10:10040-68. DOI: https://doi.org/10.3390/s101110040

Gould W.V. 1992. Tomato production, processing, and technology (1st ed.): CTI Publications, Baltimore, MD, USA. DOI: https://doi.org/10.1533/9781845696146

Grass J. 1991. Pigments in vegetables: chlorophylls and carotenoids. Van Nostrand Reinhold: AVI books, New York, NY, USA.

Greer D.H. 2005. Non‐destructive chlorophyll fluorescence and colour measurements of ‘Braeburn’and ‘Royal Gala’apple (Malus domestica) fruit development throughout the growing season. N. Zeal. J. Crop Hortic. Sci. 33:413-21. DOI: https://doi.org/10.1080/01140671.2005.9514378

Hobson G., Grierson D. 1993. Tomato. pp 405-442 in Biochemistry of fruit ripening. Springer-Chapman and Hall, London, UK. DOI: https://doi.org/10.1007/978-94-011-1584-1_14

Hoffmann A.M., Noga G., Hunsche M. 2015. Fluorescence indices for monitoring the ripening of tomatoes in pre-and postharvest phases. Sci. Hortic. 191:74-81. DOI: https://doi.org/10.1016/j.scienta.2015.05.001

Huybrechts C., Deckers T., Valcke R. 2002. Predicting fruit quality and maturity of apples by fluorescence imaging: effect of ethylene and AVG. pp 243-247 in International Conference: Postharvest Unlimited, 599.

Kim D.S., Choi J.H., Kim S., Lim J.H. 2019. Prediction of carotenoid content in tomato fruit using a fluorescence screening method. Postharv. Biol. Technol. 156:110917. DOI: https://doi.org/10.1016/j.postharvbio.2019.05.018

Kim D.S., Na H., Kwack Y., Chun C. 2014. Secondary metabolite profiling in various parts of tomato plants. Korean J. Hortic. Sci. 32:252-60. DOI: https://doi.org/10.7235/hort.2014.13165

Lai A., Santangelo E., Soressi G., Fantoni R. 2007. Analysis of the main secondary metabolites produced in tomato (Lycopersicon esculentum, Mill.) epicarp tissue during fruit ripening using fluorescence techniques. Postharv. Biol. Technol. 43:335-42.

Lambers H.F.C. III, Pons T. 2008. Plant physiological ecology. 2nd ed. Springer, New York, NY, USA. DOI: https://doi.org/10.1007/978-0-387-78341-3

Lechaudel M., Urban L., Joas J. 2010. Chlorophyll fluorescence, a nondestructive method to assess maturity of mango fruits (Cv. ‘Cogshall’) without growth conditions bias. J. Agric. Food Chem. 58:7532-8.

Lichtenthaler H., Buschmann C., Knapp M. 2005. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica. 43:379-93. DOI: https://doi.org/10.1007/s11099-005-0062-6

López Camelo A.F., Gómez P.A. 2004. Comparison of color indexes for tomato ripening. Hortic. Brasil. 22:534-7. DOI: https://doi.org/10.1590/S0102-05362004000300006

Lu H., Lou H., Zheng H., Hu Y., Li Y. 2012. Nondestructive evaluation of quality changes and the optimum time for harvesting during jujube (Zizyphus jujuba Mill. cv. Changhong) fruits development. Food Bioproc. Technol. 5:2586-95. DOI: https://doi.org/10.1007/s11947-011-0640-5

Pathare P.B., Opara U.L., Al-Said F.A.-J. 2013. Colour measurement and analysis in fresh and processed foods: a review. Food Bioproc. Technol. 6:36-60. DOI: https://doi.org/10.1007/s11947-012-0867-9

Pék Z., Helyes L., Lugasi A. 2010. Color changes and antioxidant content of vine and postharvest-ripened tomato fruits. HortSci. 45:466-8. DOI: https://doi.org/10.21273/HORTSCI.45.3.466

Saad A.M., Ibrahim A., El-Bialee N. 2016. Internal quality assessment of tomato fruits using image color analysis. Agric. Engine. Int. CIGR J. 18:339-52.

Seifert B., Pflanz M., Zude M. 2014. Spectral shift as advanced index for fruit chlorophyll breakdown. Food Bioproc. Technol. 7:2050-9. DOI: https://doi.org/10.1007/s11947-013-1218-1

Smillie R. 1987. Application of chlorophyll fluorescence to the postharvest physiology and storage of mango and banana fruit and the chilling tolerance of mango cultivars. Asian Food J. 3:55-9.

Thimann K. 1980. Senescence in plants. CRC Press, Boca Raton, FL, USA.

Toivonen P.M.A. 1992. Chlorophyll fluorescence as a nondestructive indicator of freshness in harvested broccoli. Hort. Sci. 27:1014-5.

USDA. 1991. Visual Aid TM-L-I. The John Henry Co., Lansing, MI, USA.

Early Release
Tomatoes, maturity, chlorophyll fluorescence induction, colorimeter, development.
  • Abstract views: 130

  • PDF: 79
How to Cite
Abdelhamid, M. A., Sudnik, Y., Alshinayyin, H. J., & Shaaban, F. (2020). A non-destructive method for monitoring the ripening of tomatoes based on their induction of chlorophyll fluorescence. Journal of Agricultural Engineering. https://doi.org/10.4081/jae.2020.1098