Wireless sensor network to identify the reduction of meteorological gradients in greenhouse in subtropical conditions

  • Thais Queiroz Zorzeto Cesar | thaisqzc@unicamp.br School of Agricultural Engineering (FEAGRI), University of Campinas (UNICAMP), Brazil. https://orcid.org/0000-0001-6959-7990
  • Paulo Ademar Martins Leal School of Agricultural Engineering (FEAGRI), University of Campinas (UNICAMP), Brazil.
  • Omar Carvalho Branquinho School of Agricultural Engineering (FEAGRI), University of Campinas (UNICAMP), Brazil.
  • Felipe Antonio Moura Miranda School of Agricultural Engineering (FEAGRI), University of Campinas (UNICAMP), Brazil.

Abstract

Spatial and temporal monitoring of temperature and relative humidity is essential for greenhouse management, therefore, wireless sensor networks (WSN) can offer crucial advantages. The objective of this work was to use a WSN to characterize and map the horizontal and vertical variability of air temperature and relative humidity inside a greenhouse using five different configurations. The configurations were based on combinations between the following actuating mechanisms: i) mechanical ventilation (by two exhaust fans); ii) natural ventilation (through the roof vent openings); iii) shading through the use of thermo-reflective screen. The WSN was designed with 45 spatially distributed measuring points, and the air temperature and relative humidity were recorded automatically every 30 seconds, for ten consecutive days, for each configuration. Our results show that the horizontal and vertical homogeneity of the meteorological elements depends on the actuating mechanism used in the greenhouse. Mechanical ventilation approximated the temperature and relative humidity of the indoor and outdoor air, with a homogeneous horizontal distribution throughout the environment. Opening the roof vent reduced vertical gradients of temperature and relative humidity. Our observations also showed that the combination of the use of roof vent openings with mechanical ventilation is an effective way to achieve horizontal homogeneity of meteorological elements.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Balendonck J., van Os E.A., van der Schoor R., van Tuijl B.A.J., Keizer L.C.P. 2010. Monitoring spatial and temporal distribution of temperature and relative humidity in greenhouses based on wireless sensor technology. Proc. International Conference on Agricultural Engineering, AgEng 2010: towards environmental technologies. Wageningen University and Research Center, Clermont-Ferrand, France, 443p.

Balendonck J., Sapounas A.A., Kempkes F., van Os E.A., van der Schoor R., van Tuijl B.A.J., Keizer L.C.P. 2014. Using a wireless sensor network to determine climate heterogeneity of a greenhouse environment. Acta Hortic. 1037:539-46. DOI: https://doi.org/10.17660/ActaHortic.2014.1037.67

Bojacá C.R., Gil R., Gómez S., Cooman A., Schrevens E. 2009. Analysis of greenhouse air temperature distribution using geostatistical methods. Trans. ASABE. 52:957-68. DOI: https://doi.org/10.13031/2013.27393

Chen C. 2003. Prediction of longitudinal variations in temperature and relative humidity for evaporative cooling greenhouses. Agricult. Engine. J. 12:143-64.

Coomans M., Allaerts K., Wittemans L., Pinxteren D. 2013. Monitoring and energetic performance of two similar semi-closed greenhouse ventilation systems. Energy Convers. Manage. 76:128-36. DOI: https://doi.org/10.1016/j.enconman.2013.07.028

García-Ruiz R.A., López-Martínez J., Blanco-Claraco J.L,. Pérez-Alonso J., Callejón-Ferre A.J. 2018. On air temperature distribution and ISO 7726-defined heterogeneity inside a typical greenhouse in Almería. Comput. Electron. Agricult. 151:264-75. DOI: https://doi.org/10.1016/j.compag.2018.06.001

Ferentinos K.P., Katsoulas N., Tzounis A., Bartzanas T., Kittas C. 2017. Wireless sensor networks for greenhouse climate and plant condition assessment. Biosyst. Engine. 153:70-81. DOI: https://doi.org/10.1016/j.biosystemseng.2016.11.005

Kittas C., Katsoulas N., Papa K., Thanasenaris A., Bartzanas T. 2012. Improvement of greenhouse microclimate distribution by means of air mixing fans. Acta Horticult. 927:589-94. DOI: https://doi.org/10.17660/ActaHortic.2012.927.72

Kutta E., Hubbart J. 2014. Improving understanding of microclimate heterogeneity within a contemporary plant growth facility to advance climate control and plant productivity. J. Plant Sci. 2:167-78.

López A., Valera D.L., Molina-Aiz F.D. 2011. Sonic anemometry to measure natural ventilation in greenhouses. Sensors. 11:9820-38. DOI: https://doi.org/10.3390/s111009820

López A., Valera D.L., Molina-Aiz F.D., Peña A. 2013. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse. Sci. Agric. 70:219-28. DOI: https://doi.org/10.1590/S0103-90162013000400001

López-Martínez J., Blanco-Claraco J.L., Pérez-Alonso J., Callejón-Ferre A.J. 2018. Distributed network for measuring climatic parameters in heterogeneous environments: application in a greenhouse. Comput. Electron. Agricult. 145:105-21. DOI: https://doi.org/10.1016/j.compag.2017.12.028

Narasimhan V.L., Arvind A.A., Bever K. 2007. Greenhouse asset management using wireless sensor-actor networks. Proc. International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies. DOI: 10.1109/UBICOMM.2007.43 DOI: https://doi.org/10.1109/UBICOMM.2007.43

Oz H., Atilgan A., Buyuktas K., Alagoz T. 2009. The efficiency of fan-pad cooling system in greenhouse and building up of internal greenhouse temperature map. Afr. J. Biotechnol. 8:5436-44.

Pawlowski A., Guzman J.L., Rodríguez F., Berenguel M., Sánchez J., Dormido S. 2009. Simulation of greenhouse climate monitoring and control with wireless sensor network and event-based control. Sensors. 9:232-52. DOI: https://doi.org/10.3390/s90100232

Sapounas A.A., Nikita-Martzopoulou C., Spiridis A. 2008. Prediction the spatial air temperature distribution of an experimental greenhouse using geostatistical methods. Acta Hortic. 801:495-500. DOI: https://doi.org/10.17660/ActaHortic.2008.801.54

Stichting Milieukeur. 2010. Certification Groen Label Kas - Level B = CertificatieschemaGroen Label Kas - Niveau B - 2010 (in Dutch). Available from: http://www.smk.nl Accessed: Aug 15, 2014.

Suay R., López S., Granell R., Moltó E., Fatnassi H., Boulard T. 2008. Preliminary analysis of greenhouse microclimate heterogeneity for different weather. Acta Hortic. 797:103-9. DOI: https://doi.org/10.17660/ActaHortic.2008.797.12

Tanny J. 2013. Microclimate and evapotranspiration of crops covered by agricultural screens: A review. Biosyst. Engine. 114:26-43. DOI: https://doi.org/10.1016/j.biosystemseng.2012.10.008

Teitel M., Atias M., Barak M. 2010. Gradients of temperature, humidity and CO2 along a fan-ventilated greenhouse. Biosyst. Engine. 106:166-74. DOI: https://doi.org/10.1016/j.biosystemseng.2010.03.007

Vox G., Losito P., Valente F., Consoletti R., Scarascia-Mugnozza G., Schettini E., Marzocca C., Corsi F. 2014. A wireless telecommunications network for real-time monitoring of greenhouse microclimate. J. Agric. Engine. XLV:237. DOI: https://doi.org/10.4081/jae.2014.237

WMO (World Meteorological Organization). 1953. Commission for synoptic meteorology. Secretariat of the World Meteorological Organization, Geneva, Switzerland.

Zorzeto T.Q., Leal P.A.M. 2017. Wireless sensor network to map the meteorological variability in a greenhouse with evaporative cooling. Acta Hortic. 1154:213-20.

Published
2020-11-13
Info
Issue
Section
Original Articles
Keywords:
Exhaust fan, protected cultivation, SHT75, wireless sensor network, roof vent openings, windows.
Statistics
  • Abstract views: 536

  • PDF: 114
  • HTML: 0
How to Cite
Queiroz Zorzeto Cesar, T., Ademar Martins Leal , P., Carvalho Branquinho, O., & Moura Miranda, F. A. (2020). Wireless sensor network to identify the reduction of meteorological gradients in greenhouse in subtropical conditions. Journal of Agricultural Engineering, 52(1). https://doi.org/10.4081/jae.2020.1105