Comparative analysis of soil-sampling methods used in precision agriculture

https://doi.org/10.4081/jae.2021.1117

Authors

  • José Roberto Moreira Ribeiro Gonçalves Department of Architecture and Engineering, Laureate International - IBMR, Barra da Tijuca, RJ, Brazil. https://orcid.org/0000-0003-3321-8818
  • Gabriel Araújo e Silva Ferraz Department of Agricultural Engineering, Federal University of Lavras, University Campus, Lavras, MG, Brazil. https://orcid.org/0000-0001-6403-2210
  • Étore Francisco Reynaldo Field Equipment Manager - Syngenta, Uberlândia-MG, Brazil. https://orcid.org/0000-0002-2184-7177
  • Diego Bedin Marin Department of Agricultural Engineering, Federal University of Lavras, University Campus, Lavras, MG, Brazil. https://orcid.org/0000-0001-7526-0825
  • Patrícia Ferreira Ponciano Ferraz Department of Agricultural Engineering, Federal University of Lavras, University Campus, Lavras, MG, Brazil. https://orcid.org/0000-0002-9708-0259
  • Manuel Pérez-Ruiz Area of Agroforestry Engineering, Technical School of Agricultural Engineering (ETSIA), Universidad de Sevilla, Sevilla, Spain. https://orcid.org/0000-0002-3681-1572
  • Giuseppe Rossi Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy. https://orcid.org/0000-0003-0211-9294
  • Marco Vieri Department of Agricultural, Food, Environment and Forestry (DAGRI), Biosystem Engineering Division, University of Florence, Florence, Italy. https://orcid.org/0000-0002-6167-5322
  • Daniele Sarri | daniele.sarri@unifi.it Department of Agricultural, Food, Environment and Forestry (DAGRI), Biosystem Engineering Division, University of Florence, Florence, Italy.

Abstract

The aim of this study was to compare three different soil-sampling methods used in Precision Agriculture and their environmental impact on agricultural production. The sampling methods used were: zone management by elevation, grid sampling (GS) and sampling oriented by apparent soil electrical conductivity (OS). Three different fields were tested. When the recommendations were compared, a significant difference among the suggested doses was observed. This indicated the need to improve the soil-sampling techniques, since there were doubts about input deficits or overdoses, regardless of the technology studied. The GS method was the most environmentally viable alternative for phosphorus (P) compared to other methods and the OS presented as the better option for potassium (K) and nitrogen (N). However, the use of soil sensors appeared to be a viable technology that needs further improvement in order to improve productivity and, hence, economic and environmental benefits.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Artuzo F.D. 2015. Análise da eficiência técnica e econômica da agricultura de precisão a taxa variável de fertilizantes na cultura da soja no RJ. Master’s Thesis, Federal University of Rio Grande do Sul, Brazil.

Artuzo F.D., Jandrey W.F., Silva L.X. 2014. Impacto da agricultura de precisão a taxa variável na cultura da soja: questões produtivas e ambientais. pp 146-161 in Proc. 2º Simpósio da Ciência do Agronegócio, Porto Alegre, RS, Brazil.

Assad E.D., Martins S.C., Pinto H.S. 2012. Sustentabilidade no Agronegócio Brasileiro: Coleção de Estudos sobre Diretrizes para uma Economia Verde no Brasil. 1st ed. Fundação Brasileira para o Desenvolvimento Sustentável, Rio de Janeiro, RJ, Brazil.

Beras G. 2014. Economic viability analysis of the soybean crop seeding using fertilizer variable rate in the furrow. Master’s Thesis, Federal University of Santa Maria, Brazil.

Biesdorf E.M., Teixeira M.F.F., Dietrich O.H., Pimentel L.D., Araujo C.D. 2016. Nitrogen application methods on the maize crop in cerrado soil. Rev. Agric. Neotrop. 3:44-50. DOI: https://doi.org/10.32404/rean.v3i1.805

Bobato A. 2006. Ãndice nutricional do Nitrogênio: uma ferramenta para o diagnóstico do estado nutricional da cultura do milho. Master’s Thesis, Federal University of Paraná, Brazil.

Catania P., Comparetti A., Febo P., Morello G., Orlando S., Roma E., Vallone M. 2020. Positioning accuracy comparison of GNSS receivers used for mapping and guidance of agricultural machines. Agronomy 10(7):doi:10.3390/agronomy10070924. DOI: https://doi.org/10.3390/agronomy10070924

Celinski V.G. 2008. Evaluation of an electric measure sensor using correlation with soil attributes. Dissertation. São Paulo State University, Brazil.

Cherubin M.R., Santi A.L., Eitelwein M.T., Amado T.J.C., Simon D.H., Damian J.M. 2015. Sampling grid size for characterization of the spatial variability of phosphorus and potassium in an Oxisol. Pesqui. Agropecu. Bras. 50:168-77. DOI: https://doi.org/10.1590/S0100-204X2015000200009

Costa C.C., Guilhoto J.J.M. 2013. Impactos potenciais da agricultura de precisão sobre a economia brasileira. Rev. Eco. Agro. 10:177-204.

Crookston R.K. 2006. A top 10 list of developments and issues impacting crop management and ecology during the past 50 years. Crop Sci. 46:2253-62. DOI: https://doi.org/10.2135/cropsci2005.11.0416gas

Empresa Brasileira de Pesquisa Agropecuária, 1997. Manual de métodos de análise de solos. 2nd ed. Centro Nacional de Pesquisa de Solos, Rio de Janeiro, RJ, Brazil.

Ferraz G.A.S., Barbosa B.D.S., Reynaldo E.F., Santos S.A., Goncalves J.R.M.R., Ferraz P.F.P. 2019. Spatial variability of soil pH sampled by two methodologies used in precision agriculture in farms under crop rotation. Dyna 86:289-97. DOI: https://doi.org/10.15446/dyna.v86n209.70897

Fontoura S.M.V., Vieira R.C.B., Bayer C., Viero F., Anghinoni I., Moraes R.P., 2015. Fertilidade do solo e seu manejo em sistema plantio direto no Centro-Sul do Paraná. 1st ed. Fundação Agrária de Pesquisa Agropecuária, Guarapuava, PR, Brazil.

Gebler L., Bertol I., Biasi L.R.D., Ramos R.R., Louzada J.A.S. 2014. Superficial loss of reactive phosphorus potentially contaminant by intense rainfall simulation. Eng. Sanit. Ambient. 19:393-399. DOI: https://doi.org/10.1590/S1413-41522014019000000564

Gomes M.A.F., Barizon R.R.M. 2014. Panorama da contaminação Ambiental por Agrotóxicos e nitrato de origem agrícola no Brasil: Cenário 1992/201. 1st ed. Embrapa Meio Ambiente, Jaguariúna, SP, Brazil.

Hauschild F.G. 2013. Precision farming techiniques for definiton management zones of soil. Master’s Thesis. Federal University of Santa Maria, Brazil.

Kaiser D.R., Reinert D.J., Reichert J.M., Streck C.A., Pellegrini A. 2010. Nitrate and ammonium in soil solution in tobacco management systems. Rev. Bras. Cienc. Solo 34:379-88. DOI: https://doi.org/10.1590/S0100-06832010000200011

Keskin M., Sekerli Y.E. 2016. Awareness and adoption of precision agriculture in the Cukurova region of Turkey. Agron. Res. 14:1307-20.

Klein C., Agne S.A.A. 2012. Phosphorus: from the nutrient to pollutant! Rev. Eletrônica Gest. Educ. Tecnol. Ambient. 8:1713-21.

Machado P.L.O.A., Bernardi A.C.C., Valencia L.I.O., Molin J.P., Gimenez L.M., Silva C.A., Andrade A.G., Madari B.E., Meirelles M.S.P. 2006. Electrical conductivity mapping in relation to clay of a Ferralsol under no tillage system. Pesq. Agropec. Bras. 41:1023-31.

Mallarino A.P., Wittry D.J. 2004. Efficacy of grid and zone soil sampling approaches for site-specific assessment of phosphorus, potassium, pH, and organic matter. Precis. Agric. 5:131-44. DOI: https://doi.org/10.1023/B:PRAG.0000022358.24102.1b

Miqueloni D.P., Gianello E.M., Bueno C.R.P. 2015. Variabilidade espacial de atributos e perda de solo na definição de zonas de manejo. Pesq. Agropec. Trop. 45:18-28. DOI: https://doi.org/10.1590/1983-40632015v4528029

Mulla D.J. 2013. Twenty-five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 114:358-71. DOI: https://doi.org/10.1016/j.biosystemseng.2012.08.009

Oliveira R.B.D., Lima J.S.D.S., Xavier A.C., Passos R.R., Silva D.A.S., Silva A.F.D. 2008. Comparison between soil sampling methods for conilon coffee liming and fertilization recommendation. Eng. Agríc. 28:176-86. DOI: https://doi.org/10.1590/S0100-69162008000100018

Pierce F.J., Nowak P. 1999. Aspects of precision agriculture. Adv. Agron. 67:1-86. DOI: https://doi.org/10.1016/S0065-2113(08)60513-1

Pierpaoli E., Carli G., Pignatti E., Canavari M. 2013. Drivers of precision agriculture technologies adoption: a literature review. Proc. Technol. 8:61-9. DOI: https://doi.org/10.1016/j.protcy.2013.11.010

Prado E.V., Machado T.A., Prado F.M.T. 2015. Geração e correlação de zonas de manejo usando sensor spad e condutividade elétrica aparente do solo para a cafeicultura irrigada na zona da mata mineira. Rev. Cient. Eletr. Agron. 1:1-7.

Ragagnin V.A., Sena Júnior D.G., Silveira Neto N.A. 2010. Recommendation of liming at variable rates under different sampling intensities. Rev. Bras. Eng. Agr. Amb. 14:600-7. DOI: https://doi.org/10.1590/S1415-43662010000600006

Rambo L., Silva P.R.F., Argenta G., Sangoi L. 2004. Plant parameters to refine the management of nitrogen side-dress application in maize. Cienc. Rural 34:1637-45. DOI: https://doi.org/10.1590/S0103-84782004000500052

Sanchez R.B., Marques Júnior J., Pereira G.T., Baracat Neto J., Siqueira D.S., Souza Z.M.D. 2012. Mapping the relief forms to estimate the fertilization expenses in sugarcane. Eng. Agríc. 32:280-92. DOI: https://doi.org/10.1590/S0100-69162012000200008

Sapkota T.B., Majumdar K., Jat M.L., Kumar A., Bishnoi D.K., McDonald A.J., Pampolino M. 2014. Precision nutrient management in conservation agriculture based wheat production of Northwest India: Profitability, nutrient use efficiency and environmental footprint. Field Crops Res. 155:233-44. DOI: https://doi.org/10.1016/j.fcr.2013.09.001

Silva C.B. 2009. Innovation in the sugarcane industry of São Paulo state: determiners to adopt technologies of precision agriculture. Dissertation. University of São Paulo, Brazil.

Silva M.A.S.D., Griebeler N.P., Borges L.C. 2007. Use of stillage and its impact on soil properties and groundwater. Rev. Bras. Eng. Agríc. Ambient. 11:108-14.

Simplício N. 2015. Fertilizers ecotoxicity: A comparative analysis of nitrogen, phosphorus and potassium-based products and its active ingredients separately. Master’s Thesis. University of Brasília, Brazil. DOI: https://doi.org/10.3390/toxics5010002

Vargas G.R. 2012. Potassium fertilization effect on soybean yield. Publ. UEPG Ci. Exatas Terra, Ci. Agr. Eng. 18:79-84.

Walton J.C., Roberts R.K., Lambert D.M., Larson J.A., English B.C., Larkin S.L., Martin S.W., Marra M.C., Paxton K.W., Reeves J.M. 2010. Grid soil sampling adoption and abandonment in cotton production. Precis. Agric. 11:135-47. DOI: https://doi.org/10.1007/s11119-009-9144-y

Wang J., Lu X., Feng Y., Yang R. 2018. Integrating multi-fractal theory and geo-statistics method to characterize the spatial variability of particle size distribution of minesoils. Geoderma 317:39-46. DOI: https://doi.org/10.1016/j.geoderma.2017.12.027

Zhang Q., Yang Z., Li Y., Chen D., Zhang J., Chen M. 2010. Spatial variability of soil nutrients and GIS-based nutrient management in Yongji County, China. Int. J. Geogr. Inf. Sci. 24:965-81. DOI: https://doi.org/10.1080/13658810903257954

ZinkeviÄius R. 2018. Influence of soil sampling for precision fertilizing. Agron. Res. 6:423-9.

Downloads

Published
2021-01-25
Info
Issue
Section
Original Articles
Keywords:
Management zones, grid sampling, environmental impact, electrical conductivity, soil proximity sensor.
Statistics
  • Abstract views: 1919

  • PDF: 405
  • HTML: 11
How to Cite
Moreira Ribeiro Gonçalves, J. R., Araújo e Silva Ferraz, G. ., Francisco Reynaldo, Étore ., Bedin Marin, D. ., Ferreira Ponciano Ferraz, P. ., Pérez-Ruiz, M. ., Rossi, G., Vieri, M., & Sarri, D. (2021). Comparative analysis of soil-sampling methods used in precision agriculture. Journal of Agricultural Engineering, 52(1). https://doi.org/10.4081/jae.2021.1117

Most read articles by the same author(s)