Measuring oxygen saturation and pulse rate in dairy cows before and after machine milking using a low-cost pulse oximeter


The present study was aimed to measure the haemoglobin oxygen saturation and the pulse rate at teat level on dairy cows after and before milking, using a low cost pulse oximeter developed especially. The pulse oximeter has been tested during a three days of field test involving 18 Holstein Friesian cows raised in a commercial farm located in Northern Italy. The results highlighted that there is a significant difference both in haemoglobin oxygen saturation (SpO2) and pulse rate before and after milking considering the entire sample of animals. By dividing the sample according to the milking time (fast < 8 min and slow > 8 min), a significant difference between fast and slow cows has been observed for SpO2, whilst no difference has been noted considering the lactation stage (< 70 DIM and 71-140 DIM). About the pulse rate, on the contrary, milking time and lactation stage were not significantly different. This confirms that machine milking can create stress to the teat evoking circulatory impairment of its tissue and that pulse oximetry could be useful for detecting machine milking-induced alterations of teats. In perspective, the pulse oximeter could be used as a part of a monitoring system of the milking machine, enabling to change its operating parameters in order to minimize the mechanical stress on the teats.



PlumX Metrics


Download data is not yet available.


Bleul U., Kahn W. (2008), Monitoring the bovine fetus during stage II of parturition using pulse oximetry, Theriogenology, 69: 302-311, DOI: 10.1016/j.theriogenology.2007.09.033. DOI:

Coghe J., Uystepruyst C., Bureau F.,Lekeux P. (1999). Non-invasive assessment of arterial haemaglobin oxygen saturation in cattle by pulse oximetry. Vet. Rec. 145: 666-669,

Detry B., Cambier C., Frans A., Gustin P., Clerbaux T. (2003). Calculation of Bovine Heamoglobin Oxygen Saturation by Algorithms Integrating Age, Haemoglobin Content, Blood pH, Partial Pressures of Oxygen and Carbon Dioxide in the Blood, and Temperature. Vet. J. 165: 258-265. DOI: 10.1016/S1090-0233(02)00167-3 DOI:

Dhand, N. K., Khatkar, M. S. (2014). Statulator: An online statistical calculator. At

Grosenbaugh D. A., Alben J. O., Muir W. W. (2007). Absorbance Spectra of Inter-Species Hemoglobins in the Visible and Near Infrared Regions. J Vet Emerg Crit Care. 7(1): 36-42. DOI: 10.1111/j.1476-4431.1997.tb00042.x DOI:

Hamann J., Burvenich C., Mayntz M., Osteras O., Haider W. (1994). Machine-induced changes in the status of the bovine teat with respect to the new infection risk. Teat Tissue Reactions to Machine Milking and new Infection Risk. Bulletin of the International Dairy Federation, 297: 13–22. ISSN 0250-5118

Hamann J., Mein G.A. (1988). Responses of the bovine teat to machine milking: measurement of changes in thickness of the teat apex. J. Dairy Res., 55: 331–338. DOI: 10.1017/S0022029900028582 DOI:

Hamann J., Mein G.A. (1996). Teat thickness changes may provide biological test for effective pulsation. J. Dairy Res. 63: 179–189. DOI: DOI:

Hillerton J.E., Ohnstad I., Baines J.R., Leach K.A. (2000). Changes in cow teat tissue created by two types of milking cluster. J. Dairy Res., 67: 309–317. DOI: 10.1017/S0022029900004283 DOI:

Hopster H., van der Werf J.T.N, Blokhuis J.H. (1998). Side preference of dairy cows in the milking parlour and its effects on behaviour and heart rate during milking. Appl. Anim. Behav. Sci. 55 (1998) 213-229 DOI:

Junga P., Travnicek P., Ruzbarsky J. (2016). Monitoring of the machine milking process with application of infrared thermography. MM Sci. J. September 2016: 985-989. DOI: 10.17973/MMSJ.2016_09_201652 DOI:

Kanz P., Krieger S., Drillich M., Iwersen M. (2018). Technical note: Evaluation of a wireless pulse oximeter for measuring arterial oxygen saturation and pulse rate in newborn Holstein Friesian calves. J. Dairy Sci. 101: 6437-6442, DOI: DOI:

Kuchler, K. (2011). Investigation of the effects of milking on the teat tissue and the teat blood flow using ultrasonographic scanning and color angiography [Der Einfluss des Melkens auf Durchblutung und Morphologie der Rinderzitze untersucht mittels Color Angiographie und B-Mode Sonographie]. In Zentrum für Klinische Tiermedizin der Tierärztlichen Fakultät. Vol. Dr. Vet. Med. Ludwig-Maximilians-Universität München, Munich.

Maltz E., Reinemann D.J., Davis M.A., (2000). Blood flow and oxygen concentration of teat-end tissue before and after machine milking, ASAE annual International Meeting Milwaukee, Wisconsis, USA, Paper No. 003012.

Odorcić M., Rasmussen M.D., Paulrud C.O., Bruckmaier R.M. (2019). Review: Milking machine settings, teat condition and milking efficiency in dairy cows. Animal, 13: 94-99. doi:10.1017/S1751731119000417 DOI:

Ohnstad I., Mein G.A., Baines J.R., Rasmussen M.D., Farnsworth R., Pocknee B.R., Hemling T.C., Hillerton J.E. (2007). Addressing teat condition problems. Pp. 189–199 in Proc. of the National Mastitis Council Annual Meeting, San Antonio, TX, USA.

Penry J.F., Upton J., Mein G.A., Rasmussen M.D., Ohnstad I., Thompson P.D., Reinemann D.J. (2017). Estimating teat canal cross-sectional area to determine the effects of teat-end and mouthpiece chamber vacuum on teat congestion. J. Dairy Sci. 100: 821–827. DOI: 10.3168/jds.2016-11533 DOI:

Royle C., Garnsworthy P. C., McArthur A. J., Mepham T. B. (1992). Effects of frequent milking on heart rate and other physio-logical variables in dairy cows. Pp. 237–243 in Proc. of Prospects for Automatic Milking, Wageningen, The Netherlands.

Siam A. I., Elazm A. A., El-Bahnasawy N, A., El Banby G., Abd El-Samie F. E. (2019). Smart health monitoring system based on IoT and cloud computing. Pp. 37-42 in Proc. of 1st International Conference on Electronic Engineering ICEEM2019, Menoufia University, Egypt. DOI:

Tangorra F. M., Redaelli V., Luzi F., Zaninelli M. (2019). The use of infrared thermography for the monitoring of udder teat stress caused by milking machines. Animals, 9, 384: 1-13. doi:10.3390/ani9060384 DOI:

Telfer B., Hoyt R., Lacirignola J., Patel T., Siegel A., Swiston A., Singh N., Trebicka R., Weston C., Williamson J. (2017). Wearable oximetry for harsh environments. Pp. 107-110 in Proc. of 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, The Netherlands, doi: 10.1109/BSN.2017.7936019. DOI:

Upton J., Penry J. F., Rasmussen M. D., Thompson P. D., Reinemann D.J. (2016). Effect of pulsation rest phase duration on teat end congestion. J. Dairy Sci. 99:3958–3965. https://doi .org/10 .3168/ jds .2015 -10466. DOI:

Uystepruyst C., Coghe J., Bureau F., Lekeux P., (2000). Evaluation of accuracy of pulse oximetry in newborn calves. Vet. J. 159: 71-76. DOI:

Wieland M., Nydam D. V., Älveby N., Wood P., Virkler P. D. (2018). Short communication: Teat-end shape and udder-level milking characteristics and their associations with machine milking induced changes in teat tissue condition. J. Dairy Sci. 101:11447–11454. https: / / doi .org/ 10 .3168/ jds .2018 -15057. DOI:

Wieland M., Shirky S., Gioia G., Sipka A., Virkler P.D., Nydam D.V., Älveby N., Porter I.R. (2020). Blood perfusion of teat tissue in dairy cows: Changes associated with pre-milking stimulation and machine milking. J. Dairy Sci. 103: 1-12. DOI:

Original Articles
Dairy cows, haemoglobin oxygen saturation, machine milking, pulse oximeter, pulse rate.
  • Abstract views: 87

  • PDF: 38
How to Cite
Calcante, A., & Tangorra, F. M. (2021). Measuring oxygen saturation and pulse rate in dairy cows before and after machine milking using a low-cost pulse oximeter. Journal of Agricultural Engineering, 52(1).