Influence of a hybrid drying combined with infrared and heat pump dryer on drying characteristics, colour, thermal imaging and bioaccessibility of phenolics and antioxidant capacity of mushroom slices

Published:11 October 2023
Abstract Views: 1014
PDF: 436
HTML: 38
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

An infrared-assisted heat pump drying (IR-HPD) was designed and used for drying of mushroom slices at three different infrared (IR) powers (50, 100, and 150 W) and a fixed drying temperature of 40°C and air velocity of 1 m/s. The changes in total phenolic content (TPC), total antioxidant capacity (TAC) and individual phenolic contents bioaccessibility, drying characteristics, and colour values of mushroom slices were investigated. IR-HPD provided 13.11 to 30.77% higher energy savings than HPD and reduced drying time between 9.48 and 26.72%. Page, Modified Page models were considered the best for predicting the thin layer drying behaviour of mushroom slices. The effective moisture diffusivity (Deff) value increased with IR power and ranged between 6.491x10-10 and 9.023x10-10 m2s-1. The contents of TPC, TAC, and individual phenolics in mushroom slices were significantly reduced (p<0.05) after drying. In vitro the bioaccessibility of phenolic compounds and TAC generally decreased, whereas TPC bioaccessibility was increased. Colour values were decreased except for a* value that increased after drying. Thermal imaging results showed that IR lamps increase the temperature of the products in the middle close to the lamp by approximately 1.5°C. In addition, thermal imaging gave a better understanding and visualised the effect of different power IR lamps on the temperature distribution of the products according to their distance from the lamp. As a result, drying mushrooms with a hybrid drying system combined with IR and heat pump dryer provided higher energy savings than HPD, reduced drying time, and maintained the physical and nutritional characteristics of mushrooms. Overall, the use of IR-HPD is an alternative tool that allows us to obtain high-quality dried mushrooms with good nutritional attributes and a high amount of bioaccessible polyphenols.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Crossref
Scopus
Google Scholar
Europe PMC
Abbaspour-Gilandeh Y., Kaveh M., Aziz M. 2020. Ultrasonic-Microwave and Infrared Assisted Convective Drying of Carrot: Drying Kinetic, Quality and Energy Consumption. Appl. Sci. 10. DOI: https://doi.org/10.3390/app10186309
Adak N., Heybeli N., Ertekin C. 2017. Infrared drying of strawberry. Food Chem. 219:109-116. DOI: https://doi.org/10.1016/j.foodchem.2016.09.103
Ali M.M., Hashim N., Aziz S. A., Lasekan O. 2020. Emerging non-destructive thermal imaging technique coupled with chemometrics on quality and safety inspection in food and agriculture. Trends Food Sci. Technol. 105:176-85. DOI: https://doi.org/10.1016/j.tifs.2020.09.003
Barros L., Dueñas M., Ferreira I.C.F.R., Baptista P., Santos-Buelga C. 2009. Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem. Toxicol. 47:1076-9. DOI: https://doi.org/10.1016/j.fct.2009.01.039
Benzie I.F.F., Strain J.J. 1996. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 239:70-6. DOI: https://doi.org/10.1006/abio.1996.0292
Bouayed J., Hoffmann L., Bohn T. 2011. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastrointestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 128:14-21. DOI: https://doi.org/10.1016/j.foodchem.2011.02.052
Cao X.H., Zhang M., Qian H., Mujumdar A.S. 2017. Drying based on temperature-detection-assisted control in microwave-assisted pulse-spouted vacuum drying. J. Sci. Food Agric. 97:2307-15. DOI: https://doi.org/10.1002/jsfa.8040
Coşkun S., Doymaz İ., Tunçkal C., Erdoğan S. 2017. Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat Mass Transf. 53:1863-71. DOI: https://doi.org/10.1007/s00231-016-1946-7
Crank J. 1975. The mathematics of diffusion (2nd ed). Clarendon Press.
Cuvas-Limon R.B., Ferreira-Santos P., Cruz M., Teixeira J.A., Belmares R., Nobre C. 2022. Effect of Gastrointestinal Digestion on the Bioaccessibility of Phenolic Compounds and Antioxidant Activity of Fermented Aloe vera Juices. Antioxidants. 11:2479. DOI: https://doi.org/10.3390/antiox11122479
Çayan F., Deveci E., Tel-Çayan G., Duru M. E. 2020. Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC-DAD. J. Food Meas. Charact. 14:1690-8. DOI: https://doi.org/10.1007/s11694-020-00417-0
Das I., Das S.K., Bal S. 2009. Drying kinetics of high moisture paddy undergoing vibration-assisted infrared (IR) drying. J. Food Eng. 95:166-71. DOI: https://doi.org/10.1016/j.jfoodeng.2009.04.028
Delfiya D.S.A., Prashob K., Murali S., Alfiya P.V., Samuel M.P., Pandiselvam R. 2022. Drying kinetics of food materials in infrared radiation drying: A review. J. Food Process Eng. 45:e13810. DOI: https://doi.org/10.1111/jfpe.13810
Deng Y., Wang Y., Yue J., Liu Z., Zheng Y., Qian B., Zhong Y., Zhao Y. 2014. Thermal behavior, microstructure and protein quality of squid fillets dried by far-infrared assisted heat pump drying. Food Control. 36:102-10. DOI: https://doi.org/10.1016/j.foodcont.2013.08.006
Doymaz I. 2023. Influence of Infrared Drying on Some Quality Properties of Nashi Pear (Pyrus pyrifolia) Slices. Erwerbs-Obstbau, 65:47-54. DOI: https://doi.org/10.1007/s10341-022-00786-4
Doymaz İ. 2014. Infrared drying of button mushroom slices. Food Sci. Biotechnol. 23:723-9. DOI: https://doi.org/10.1007/s10068-014-0098-0
Elhusseiny S.M., El-Mahdy T.S., Awad M.F., Elleboudy N.S., Farag M.M., Aboshanab K.M., Yassien M.A. 2021. Antiviral, cytotoxic, and antioxidant activities of three edible agaricomycetes mushrooms: Pleurotus columbinus, Pleurotus sajor-caju, and Agaricus bisporus. J. Fungi. 7:645. DOI: https://doi.org/10.3390/jof7080645
Gasecka M., Siwulski M., Mleczek M. 2018a. Evaluation of bioactive compounds content and antioxidant properties of soil-growing and wood-growing edible mushrooms. J. Food Process. Pres. 42:e13386. DOI: https://doi.org/10.1111/jfpp.13386
Gasecka M., Magdziak, Z., Siwulski M., Mleczek M. 2018b. Profle of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild growing species of Agaricus. Eur. Food Res. Technol. 244:259-68. DOI: https://doi.org/10.1007/s00217-017-2952-9
Geng Z.H., Torki M., Kaveh M., Beigi M., Yang X.H. 2022. Characteristics and multi-objective soptimisation of carrot dehydration in a hybrid infrared/hot air dryer. Lwt-Food Sci. Technol. 172:114229. DOI: https://doi.org/10.1016/j.lwt.2022.114229
Ghanbarian D., Dastjerdi M.B., Torki-Harchegani M. 2016. Mass transfer characteristics of bisporus mushroom (Agaricus bisporus) slices during convective hot air drying. Heat Mass Transf. 52:1081-8. DOI: https://doi.org/10.1007/s00231-015-1629-9
Gopirajah R., Choudhary A., Anandharamakrishnan C. 2018. Computational modeling of dehydration of mushroom. MOJ Food Process. Technol. 6:264-70. DOI: https://doi.org/10.15406/mojfpt.2018.06.00174
Gursoy N., Sarikurkcu C., Cengiz M., Solak M.H. 2009. Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem. Toxicol. 47:2381-8. DOI: https://doi.org/10.1016/j.fct.2009.06.032
Heleno S.A., Barros L., Martins A., Morales P., Fernandez-Ruiz V., Glamoclija J., Ferreira I. C. 2015b. Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT-Food Sci. Technol. 63:799-806. DOI: https://doi.org/10.1016/j.lwt.2015.04.028
Heleno S.A., Barros L., Martins A., Queiroz M.J.R., Morales P., Fernández-Ruiz V., Ferreira I.C. 2015a. Chemical composition, antioxidant activity and bioaccessibility studies in phenolic extracts of two Hericium wild edible species. LWT-Food Sci. Technol. 63:475-81. DOI: https://doi.org/10.1016/j.lwt.2015.03.040
Islam T., Yu X., Xu B. 2016. Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT - Food Sci. Technol. 72:423-31. DOI: https://doi.org/10.1016/j.lwt.2016.05.005
Jaworska G., Pogoń K., Bernaś E., Duda-Chodak A. 2015. Nutraceuticals and Antioxidant Activity of Prepared for Consumption Commercial Mushrooms Agaricus bisporus and Pleurotus ostreatus. J. Food Qual. 38:111-22. DOI: https://doi.org/10.1111/jfq.12132
Kamiloglu S., Capanoglu E. 2014. In vitro gastrointestinal digestion of polyphenols from different molasses (pekmez) and leather (pestil) varieties. Int. J. Food Sci. Technol. 49:1027-39. DOI: https://doi.org/10.1111/ijfs.12396
Kantrong H., Tansakul A., Mittal G.S. 2014. Drying characteristics and quality of shiitake mushroom undergoing microwave-vacuum drying and microwave-vacuum combined with infrared drying. J. Food Sci. Technol. 51:3594-608. DOI: https://doi.org/10.1007/s13197-012-0888-4
Kayacan S., Karasu S., Akman P.K., Goktas H., Doymaz I., Sagdic O. 2020. Effect of different drying methods on total bioactive compounds, phenolic profile, in vitro bioaccessibility of phenolic and HMF formation of persimmon. LWT. 118:108830. DOI: https://doi.org/10.1016/j.lwt.2019.108830
Khampakool A., Soisungwan S., Park S.H. 2019. Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture. LWT. 99:355-63. DOI: https://doi.org/10.1016/j.lwt.2018.09.081
Kumaran A., Joel Karunakaran R. 2006. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 97:109-14. DOI: https://doi.org/10.1016/j.foodchem.2005.03.032
Lafarga T., Villaró S., Bobo G., Simó J., Aguiló‐Aguayo I. 2019. Bioaccessibility and antioxidant activity of phenolic compounds in cooked pulses. Int. J. Food Sci. Technol. 54:1816-23. DOI: https://doi.org/10.1111/ijfs.14082
Leiva-Portilla D.J., Rodríguez-Núñez K.E., Rodríguez-Ramos F.J., Delgadillo Acevedo Á., Uribe, E. 2020. Impact on Physicochemical Composition and Antioxidant Activity of the Wild Edible Mushroom Cyttaria espinosae Subjected to Drying. Chem. Biodiver. 17:e2000642. DOI: https://doi.org/10.1002/cbdv.202000642
Li X., Li J., Wang R., Rahaman A., Zeng X.-A., Brennan C.S. 2021. Combined effects of pulsed electric field and ultrasound pretreatments on mass transfer and quality of mushrooms. LWT. 150:112008. DOI: https://doi.org/10.1016/j.lwt.2021.112008
Liu Z.B., Zhang M., Wang Y.C. 2016. Drying of restructured chips made from the old stalks of Asparagus officinalis: impact of different drying methods. J. Sci. Food Agric. 96:2815-24. DOI: https://doi.org/10.1002/jsfa.7449
Lombrana J.I., Rodriguez R., Ruiz U. 2010. Microwave-drying of sliced mushroom. Analysis of temperature control and pressure. Innov. Food Sci. Emerg. Technol. 11:652-60. DOI: https://doi.org/10.1016/j.ifset.2010.06.007
Minekus M., Alminger M., Alvito P., Ballance S., Bohn T., Bourlieu C., … & Brodkorb A. 2014. A standardised static in vitro digestion method suitable for food – an international consensus. Food & Funct. 5:1113-24. DOI: https://doi.org/10.1039/C3FO60702J
Mirzaei-Baktash H., Hamdami N., Torabi P., Fallah-Joshaqani S., Dalvi-Isfahan M. 2022. Impact of different pretreatments on drying kinetics and quality of button mushroom slices dried by hot-air or electrohydrodynamic drying. LWT. 155:112894. DOI: https://doi.org/10.1016/j.lwt.2021.112894
Naknaen P., Itthisoponkul T., Charoenthaikij P. 2015. Proximate compositions, nonvolatile taste components and antioxidant capacities of some dried edible mushrooms collected from Thailand. J Food Meas. Charact. 9:259-68. DOI: https://doi.org/10.1007/s11694-015-9231-x
Nowacka N., Nowak R., Drozd M., Olech M., Los R., Malm A. 2014. Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT - Food Sci. Technol. 59:689-94. DOI: https://doi.org/10.1016/j.lwt.2014.05.041
Nowacka N., Nowak R., Drozd M., Olech M., Los R., Malm A. 2015. Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms. PLOS ONE. 10:e0140355. DOI: https://doi.org/10.1371/journal.pone.0140355
Odriozola-Serrano I., Nogueira D.P., Esparza I., Vaz A.A., Jiménez-Moreno N., Martín-Belloso O., Ancín-Azpilicueta C. 2023. Stability and Bioaccessibility of Phenolic Compounds in Rosehip Extracts during In Vitro Digestion. Antioxidants. 12:1035. DOI: https://doi.org/10.3390/antiox12051035
Palacios I., Lozano M., Moro C., D’arrigo M., Rostagno M.A., Martínez J.A., Villares A. 2011. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem. 128:674-8. DOI: https://doi.org/10.1016/j.foodchem.2011.03.085
Palafox-Carlos H., Ayala-Zavala J.F., González-Aguilar G.A. 2011. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. J. Food Sci. 76:R6-R15. DOI: https://doi.org/10.1111/j.1750-3841.2010.01957.x
Peter M.C., Liu Z.W., Fang Y.L., Dou X.L., Awuah E., Soomro S.A., Chen K.J. 2021. Computational intelligence and mathematical modelling in chanterelle mushrooms' drying process under heat pump dryer. Biosyst. Eng. 212:143-59. DOI: https://doi.org/10.1016/j.biosystemseng.2021.10.002
Piskov S., Timchenko L., Grimm W.D., Rzhepakovsky I., Avanesyan S., Sizonenko M., Kurchenko V. 2020. Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms (Pleurotus Ostreatus). Foods. 9:160. DOI: https://doi.org/10.3390/foods9020160
Rodriguez-Roque M.J., Rojas-Grau M.A., Elez-Martinez P., Martin-Belloso O. 2013. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chem. 136:206-12. DOI: https://doi.org/10.1016/j.foodchem.2012.07.115
Sadeghi E., Haghighi Asl A., Movagharnejad K. 2020. sOptimisation and quality evaluation of infrared-dried kiwifruit slices. Food Sci. Nutr. 8:720-34. DOI: https://doi.org/10.1002/fsn3.1253
Sevik S., Aktas M., Dogan H., Kocak S. 2013. Mushroom drying with solar assisted heat pump system. Energy Convers. Manag. 72:171-8. DOI: https://doi.org/10.1016/j.enconman.2012.09.035
Shi J., Pan Z., McHugh T.H., Wood D., Hirschberg E., Olson D. 2008. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT - Food Sci. Technol. 41:1962-72. DOI: https://doi.org/10.1016/j.lwt.2008.01.003
Su D.B., Lv W.Q., Wang Y., Li D., Wang L.J. 2020. Drying characteristics and water dynamics during microwave hot-air flow rolling drying of Pleurotus eryngii. Dry. Technol. 38:1493-504. DOI: https://doi.org/10.1080/07373937.2019.1648291
Sufer O., Palazoglu T.K. 2019. A study on hot-air drying of pomegranate Kinetics of dehydration, rehydration and effects on bioactive compounds. J. Therm. Anal. Calorim. 137:1981-90. DOI: https://doi.org/10.1007/s10973-019-08102-1
Taskin H., Sufer O., Attar S.H., Bozok F., Baktemur G., Buyukalaca S., Kafkas N.E. 2021. Total phenolics, antioxidant activities and fatty acid profiles of sixMorchellaspecies. J. Food Sci. Technol. Mysore, 58:692-700. DOI: https://doi.org/10.1007/s13197-020-04583-3
Tirawanichakul S., Phatthalung W.N., Tirawanichakul Y. 2008. Drying Strategy of Shrimp using Hot Air Convection and Hybrid Infrared Radiation/Hot Air Convection. Walailak J. Sci. Technol. (WJST). 5:1.
Topuz F.C., Bakkalbasi E., Aldemir A., Javidipour I. 2022. Drying kinetics and quality properties of Mellaki (Pyrus communis L.) pear slices dried in a novel vacuum-combined infrared oven. J. Food Process. Preserv. 46:e16866. DOI: https://doi.org/10.1111/jfpp.16866
Tunckal C., Ozkan-Karabacak A., Tamer C.E., Yolci-Omeroglu P., Goksel Z. 2022. Mathematical Modelling And Optimisation Of Melon Slice Drying With Response Surface Methodology In A Heat Pump Drying System. Lat. Ame Appl. Res. 52:101-10. DOI: https://doi.org/10.52292/j.laar.2022.851
Ucar T.M., Karadag A. 2019. The effects of vacuum and freeze-drying on the physicochemical properties and in vitro digestibility of phenolics in oyster mushroom (Pleurotus ostreatus). J. Food Meas. Charact. 13:2298-309. DOI: https://doi.org/10.1007/s11694-019-00149-w
Velioglu Y.S., Mazza G., Gao L., Oomah B.D. 1998. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 46:4113-7. DOI: https://doi.org/10.1021/jf9801973
Vishwanathan K.H., Giwari G.K., Hebbar H.U. 2013. Infrared assisted dry-blanching and hybrid drying of carrot. Food Bioprod. Process. 91:89-94. DOI: https://doi.org/10.1016/j.fbp.2012.11.004
Vu D.C., Vo P.H., Coggeshall M.V., Lin C.-H. 2018. Identification and sCharacterisation of Phenolic Compounds in Black Walnut Kernels. J. Agric. Food Chem. 66:4503-11. DOI: https://doi.org/10.1021/acs.jafc.8b01181
Wagay J.A., Nayik G.A., Wani S.A., Mir R.A., Ahmad M.A., Rahman Q.I., Vyas D. 2019. Phenolic profiling and antioxidant capacity of Morchella esculenta L. by chemical and electrochemical methods at multiwall carbon nanotube paste electrode. J. Food Meas. Charact. 13:1805-19. DOI: https://doi.org/10.1007/s11694-019-00099-3
Wang X., Yu J., Zhou M., Lv X. 2014. Comparative studies of ejector-expansion vapor compression refrigeration cycles for applications in domestic refrigerator-freezers. Energy. 70:635-42. DOI: https://doi.org/10.1016/j.energy.2014.04.076
Xu B., Wang D.Y., Li Z.H., Chen Z.Q. 2021. Drying and dynamic performance of well-adapted solar assisted heat pump drying system. Renew. Energy. 164:1290-305. DOI: https://doi.org/10.1016/j.renene.2020.10.104
Zeng X., Suwandi J., Fuller J., Doronila A., Ng K. 2012. Antioxidant capacity and mineral contents of edible wild Australian mushrooms. Food Sci. Technol. Int. 18:367-79. DOI: https://doi.org/10.1177/1082013211427993
Zhang L., Jiang L., Xu Z., Zhang X., Fan Y., Adnouni M., Zhang C. 2022. sOptimisation of a variable-temperature heat pump drying process of shiitake mushrooms using response surface methodology. Renew. Energy, 198:1267-78. DOI: https://doi.org/10.1016/j.renene.2022.08.094
Zhou L.Y., Cao Z.Z., Bi J.F., Yi J.Y., Chen Q.Q., Wu X.Y., Zhou M. 2016. Degradation kinetics of total phenolic compounds, capsaicinoids and antioxidant activity in red pepper during hot air and infrared drying process. Int. J. Food Sci. Technol. 51:842-53. DOI: https://doi.org/10.1111/ijfs.13050
Zhou L., Guo X., Bi J., Yi J., Chen Q., Wu X., Zhou M. 2017. Drying of Garlic Slices (Allium Sativum L.) and its Effect on Thiosulfinates, Total Phenolic Compounds and Antioxidant Activity During Infrared Drying. J. Food Process. Preserv. 41:e12734. DOI: https://doi.org/10.1111/jfpp.12734

How to Cite

Malçok, S. D. . (2023) “Influence of a hybrid drying combined with infrared and heat pump dryer on drying characteristics, colour, thermal imaging and bioaccessibility of phenolics and antioxidant capacity of mushroom slices”, Journal of Agricultural Engineering, 54(3). doi: 10.4081/jae.2023.1537.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.