Application of response surface methodology for optimisation of Cornelian cherry - Capia pepper leather dried in a heat pump drying system

Published:11 October 2023
Abstract Views: 619
PDF: 329
HTML: 14
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The heat pump drying system was optimised for cornelian cherry-capia pepper leather production development using response surface methodology. The central composite design was used to optimise the process parameters in terms of drying time, coefficient of the performance of heat pump, coefficient of the performance of the whole system, specific moisture extracted ratio, energy consumption, drying rate and colour values. The optimal condition of independent variables was obtained as a cornelian cherry pulp concentration of 47.419% and drying temperature of 33.574°C with composite desirability of 0.846. Moreover, hydroxymethylfurfural (HMF) and effective moisture diffusivity (Deff) values of all runs were analysed. HMF was not determined in cornelian cherry-capia pepper leather. Deff values of cornelian cherry-capia pepper leather were between 1.026×10-9 - 1.532×10-9 m2s-1. The drying behaviour of cornelian cherry-capia pepper leather with optimal conditions acquired with the central composite design was evaluated with seven thin-layer drying models. The statistical parameters based on R2, root mean square of error and χ2 values were determined between 0.8267 to 0.9845, 0.004087 to 0.035626 and 0.000853 to 0.066247, respectively. Page and Modified Page models were assumed to represent the heat pump drying behaviour of the cornelian cherry-capia pepper leather in thin layers compared to the other models.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Crossref
Scopus
Google Scholar
Europe PMC
Alam M.S., Gupta K. 2014. Modeling of thin layer drying kinetics of grape juice concentrate and quality assessment of developed grape leather. Agric. Eng. Int. CIGR J. 16:196.207
Basumatary B., Bhattacharya S., Das A.B. 2020. Olive (Elaeagnus latifolia) pulp and leather: Characterisation after thermal treatment and interrelations among quality attributes. J. Food Eng. 278:109948. Available from: https://doi.org/10.1016/j.jfoodeng.2020.109948 DOI: https://doi.org/10.1016/j.jfoodeng.2020.109948
Becerikli İ. 2017. Soğan suyunun geleneksel ısıl işlem ile pastörizasyonu. Master Thesis, Osmaniye Korkut Ata University, Turkey.
Cerit İ. 2015. Kırmızı biberin (Capsicum annuum l.) fonksiyonel ve mikrobiyal özellikleri üzerine modifiye atmosferde paketlemenin etkisi. Master Thesis, Sakarya University, Turkey.
Chen Y., Martynenko A. 2018. Combination of hydrothermodynamic (HTD) processing and different drying methods for natural blueberry leather. LWT. 87:470-7. DOI: https://doi.org/10.1016/j.lwt.2017.09.030
Chowdhury M.M.I., Bala B.K., Haque M.A. 2011. Energy and exergy analysis of the solar drying of jackfruit leather. Biosyst. Eng. 110:222-9. DOI: https://doi.org/10.1016/j.biosystemseng.2011.08.011
Coşkun S., Doymaz İ., Tunçkal C., Erdoğan S. 2017. Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat Mass Transf. 53:1863-71. DOI: https://doi.org/10.1007/s00231-016-1946-7
De Biaggi M., Donno D., Mellano M.G., Riondato I., Rakotoniaina E.N. 2018. Cornus mas (L.) Fruit as a Potential Source of Natural Health-Promoting Compounds: Physico-Chemical Characterisation of Bioactive Components. Plant Foods Hum. Nutr. 73:89-94. DOI: https://doi.org/10.1007/s11130-018-0663-4
Demir H., Sezer S., Süfer, Ö. 2017. Soğan dilimlerinin kurutulmasi esnasinda renk değişimine etki eden faktörlerin yanit yüzey yöntemi ile belirlenmesi. J. Food. 42:731-42. DOI: https://doi.org/10.15237/gida.GD17059
Doymaz İ. 2005. Drying behaviour of green beans. J. Food Eng. 69:161-5. DOI: https://doi.org/10.1016/j.jfoodeng.2004.08.009
Dzugan M., Tomczyk M., Miłek M., Sowa P., Wojtuszek Z., Pasternakiewicz1 A., Zaguła G. 2021. Species-dependent 5’-hydroxymethylfurfural formation in slowly dried fruits. J. Microbiol. Biotechnol. Food Sci. 10:586-91. DOI: https://doi.org/10.15414/jmbfs.2021.10.4.586-591
Embuscado M.E. 2015. 11 - Herbs and spices as antioxidants for food preservation. In: Shahidi F. (ed) Handbook of Antioxidants for Food Preservation. Woodhead Publishing, pp. 251-83. DOI: https://doi.org/10.1016/B978-1-78242-089-7.00011-7
Jaya S., Das H. 2003. A Vacuum Drying Model for Mango Pulp. Dry. Technol. 21:1215-34. DOI: https://doi.org/10.1081/DRT-120023177
Jia X., Jolly P., Clements S. 1990. Heat pump assisted continuous drying part 2: Simulation results. Int. J. Energy Res. 14:771-82. DOI: https://doi.org/10.1002/er.4440140708
Kelebek H., Sevindik O., Uzlasir T., Selli S. 2020. LC-DAD/ESI MS/MS characterisation of fresh and cooked Capia and Aleppo red peppers (Capsicum annuum L.) phenolic profiles. Eur. Food Res. Technol. 246:1971-80. DOI: https://doi.org/10.1007/s00217-020-03548-2
M’hir S., Rtibi K., Mejri A., Ziadi M., Aloui H., Hamdi M., Ayed L. 2019. Development of a Novel Whey Date Beverage Fermented with Kefir Grains Using Response Surface Methodology. J. Chem. 2019:e1218058. Available from: https://doi.org/10.1155/2019/1218058 DOI: https://doi.org/10.1155/2019/1218058
Özkan Karabacak A. 2021. Farklı Yöntemlerle Kurutulan Havuç Pestillerinin Kurutma Karakteristikleri Ile Bazı Kalite Parametrelerindeki Değişimin Modellenmesi ve Biyoyararlılıklarının Belirlenmesi. Doctoral thesis, Uludag University, Turkey.
Phahom T., Juntharat N., Premsuttarat P., Paosunthia Y., Roudaut G. 2021. Evaluation of desorption isotherms, drying characteristics and rehydration properties of crab stick by-product. Heat Mass Transfer. 57:1039-52. DOI: https://doi.org/10.1007/s00231-020-02982-y
Rouf R., Uddin S.J., Sarker D.K., Islam M.T., Ali E.S. 2020. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci. Technol. 104:219-34. DOI: https://doi.org/10.1016/j.tifs.2020.08.006
Rufián-Henares J.A., Delgado-Andrade C. 2009. Effect of digestive process on Maillard reaction indexes and antioxidant properties of breakfast cereals. Food Res. Int. 42:394-400. DOI: https://doi.org/10.1016/j.foodres.2009.01.011
Sengul M., Yildiz H., Gungor N., Okcu Z. 2010. Total phenolic content, antioxidant activity, some physical and chemical properties of pestil. Asian J. Chem. 22:448-54
Şevik S., Aktaş M., Doğan H., Koçak S. 2013. Mushroom drying with solar assisted heat pump system. Energy Convers. Manag. 171-8. DOI: https://doi.org/10.1016/j.enconman.2012.09.035
Sharma P., Ramchiary M., Samyor D., Das A.B. 2016. Study on the phytochemical properties of pineapple fruit leather processed by extrusion cooking. LWT - Food Sci. Technol. 72:534-43. DOI: https://doi.org/10.1016/j.lwt.2016.05.001
Süfer Ö., Palazoğlu T.K. 2019. A study on hot-air drying of pomegranate. J. Therm. Anal. Calorim. 137:1981-90. DOI: https://doi.org/10.1007/s10973-019-08102-1
Süfer Ö., Palazoğlu T. K. 2019. Microwave–vacuum drying of pomegranate arils (Punica granatum L. cv. Hicaznar): Effect on quality and nutrient content. J. Food Process. Preserv. 43. DOI: https://doi.org/10.1111/jfpp.14085
Süfer Ö., Demir H., Sezer S. 2018. Convective and microwave drying of onion slices regarding texture attributes. Czech J. Food Sci. 36:187-93. DOI: https://doi.org/10.17221/310/2017-CJFS
Süfer Ö., Sezer S., Demir H. 2017. Thin layer mathematical modeling of convective, vacuum and microwave drying of intact and brined onion slices. J. Food Process. Preserv. 41:13239. Available from: https://doi.org/10.1111/jfpp.13239 DOI: https://doi.org/10.1111/jfpp.13239
Suna S., Özkan-Karabacak A. 2019. Investigation of drying kinetics and physicochemical properties of mulberry leather (pestil) dried with different methods. J. Food Process. Preserv. 43:e14051. Available from: https://doi.org/10.1111/jfpp.14051 DOI: https://doi.org/10.1111/jfpp.14051
Surendhar A., Sivasubramanian V., Vidhyeswari D., Deepanraj B. 2019. Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices. J. Therm. Anal. Calorim. 136:185-97. DOI: https://doi.org/10.1007/s10973-018-7791-9
Tontul I., Topuz A. 2017. Effects of different drying methods on the physicochemical properties of pomegranate leather (pestil). LWT. 80:294-303. DOI: https://doi.org/10.1016/j.lwt.2017.02.035
Tunçkal C., Coşkun S., Seçil E. 2016. Kapalı Döngü Bir Isı Pompalı Kurutma Sisteminin Performans Analizi. Isı Bilimi ve Tekniği Dergisi 36:161-72.
Turkmen Erol N., Incedayı B., Sari F., Çopur O.U. 2022. Valorisation of agricultural by-product: Optimisation of alcohol-based extraction of polyphenols from chestnut peel using Box-Behnken Design. Int. Food Res. J. 29:86-97. DOI: https://doi.org/10.47836/ifrj.29.1.10
Ünver H. 2019. Farklı tatlandırıcı ilavesiyle üretilen kızılcık pestillerinin antioksidan kapasitesi fenolik madde ve aroma profili. Master Thesis, Atatürk University, Turkey.
Yılmaz F.M., Yüksekkaya S., Vardin H., Karaaslan M. 2017. The effects of drying conditions on moisture transfer and quality of pomegranate fruit leather (pestil). J. Saudi Soc. Agric. Sci. 16:33-40. DOI: https://doi.org/10.1016/j.jssas.2015.01.003

How to Cite

Malçok, S. D. . (2023) “Application of response surface methodology for optimisation of Cornelian cherry - Capia pepper leather dried in a heat pump drying system”, Journal of Agricultural Engineering, 54(3). doi: 10.4081/jae.2023.1538.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.