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Key technology of crop precision sowing based on the vision principle
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Abstract

The growth of crops is seriously affected in the process of pre-
cision planting of crops due to many external environmental inter-
ference factors, low precision of sowing technology, and large sig-
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nificant relative errors. To solve this problem, machine vision
technology is introduced to study the key technology of crop pre-
cision sowing based on the vision principle. After pre-processing
the crop image, the corresponding histogram is established. Then,
the segmentation threshold method is used to gray the image and
determine the best threshold to have a good recognition effect.
Finally, according to the growth height and colour analysis of
crops in the image, predict the growth of crops and realise the pre-
cision sowing of crops. The comparative experimental results
show that under the application of the new sowing technology, the
estimation accuracy of the crop planting area is high, the recogni-
tion accuracy of planting position is also high, and the fertilisation
uniformity is close to the actual data, which can provide an impor-
tant basis for improving the quality of crop sowing.

Introduction

Agriculture is the source of life for a country and the econom-
ic lifeline of a country or region (Goodwin et al., 2022). With the
vigorous development of the modern economy, agriculture’s influ-
ence is also increasing daily. In the field of agricultural produc-
tion, sowing for all kinds of crops is an essential operation. The
quality and accuracy of sowing directly impact the growth and
production of subsequent crops. At present, some modern tech-
nologies have been applied to agricultural production, and preci-
sion sowing technology has become an important component in
crop sowing (Virk et al., 2020). However, the problem of uneven
yield caused by uneven fertilisation in agricultural planting areas
has gradually emerged.

Booth et al. (2020) proposed the first robot vision framework
to estimate the growth direction of plant bulbs. The framework
takes three X-ray images as input and extracts shape, edge, and
texture features from each image. Then these features are input
into the machine learning regression algorithm to predict the two-
dimensional projection of the bulb growth direction. This method
provides an important reference for sowing by predicting the
growth direction of the corn. Ni (2021) proposed a precision seed-
er navigation technology method based on the joint positioning of
optics and ultrasound. Through the methods of ultrasonic ranging
and laser scanning, the positioning of the operation area of the
seeder and the planning of the walking path are realised, and the
seeder’s adaptability and autonomous operation level are
improved. This method provides mechanised support for the pre-
cision seeder technology, but there are problems, such as low
accuracy of the extraction of the sowing area. Oad et al. (2020)
used remote sensing technology to identify the changes in rice
sowing and harvest dates. During the study, geo-referenced crop
samples, farmers’ perception survey data, Landsat images, and cli-
mate data in the Lacana region were used. According to the
results, remote sensing technology can obtain high-quality sowing
images, which provides a reference for this technology.

Talaat et al. (2020) proposed an advanced automation system
for electric vehicle charging based on machine vision and the
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finite element method. This method uses machine vision and
Internet of things technology to design an intelligent control sys-
tem so electric vehicles can obtain the optimal value of WPT.
Machine vision has a high level of automation, reliability, and
inheritance in practical applications. Therefore, it is of great signif-
icance and influence to improve the accuracy of sowing technolo-
gy. On this basis, aiming at the problems of low precision and poor
efficiency of sowing technology in the current crop sowing pro-
cess, machine vision technology is introduced to optimise the
design of the key technology of precise sowing of crops.

Materials and Methods

Image acquisition structure model

The overall structure model of crop precision sowing image
acquisition is shown in Figure 1. In order to develop the automatic
acquisition and recognition of crop precision sowing image based
on machine vision technology, the following steps shall be per-
formed: i) the visual information acquisition model of crop preci-
sion sowing is constructed; ii) the infrared sensing information
fusion tracking and recognition method is adopted (Fca and Phh,
2020); iii) the sensor information tracking node model of data sam-
pling is constructed; and iv) the peripheral component interconnect
extensions for instrumentation bus trigger method are adopted.
Finally, the external clock bus of crop precision sowing image
acquisition is obtained.

The matched filter detection model of crop precision sowing
image is constructed, and / is set as the pixel set of crop precision
sowing remote sensing image, assuming 3x3. The sub-block tem-
plate matching detection method adopts the scale subdivision
method to construct the crop precision sowing image and the
empirical wavelet analysis method (Yi and Liu, 2021). Within the
empirical scale range defined in the frequency domain, the infor-
mation feature detection output of the crop precision sowing image
is (0¢p®). through the local quantitative feature decomposition
method; the fuzzy block feature matching model for tracking the
sensing information of crop precision sowing image is expressed
as follows:

X ={x|x€[0,A]}

Y = p°cosf*
Py 1
Z=p°sinf

where x represents the sensing and tracking information of crop
precision sowing images. The three-dimensional feature distribu-
tion structure of crop precision sowing image is used to realise
information reorganisation. The three-dimensional information
sub-band analysis model of crop precision sowing image fusion is
constructed using fuzzy information fusion and feature clustering
methods. The three-dimensional information fusion tracking con-
trol model W(x) of crop precision sowing image is constructed by
using the method of fuzziness detection (Fue et al., 2021). The
ambiguity detection characteristic component is obtained as fol-
lows:

W(x), if feasible
1+rW(x), otherwise 2
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ftiness(x) = {

Image blur operation is roughly divided into three steps. The
first step is to set a reference value X7 (usually taken as the maxi-
mum grey level /uq in the image) and use a function 77 (called
fuzzy membership function) to map the grey level n; j correspond-
ing to the pixels (i, j) in the image n to the fuzzy field relative to
the reference value:

ﬂij=Tl(n;j) 3)

In this way, an MxN -ary image x with L grey levels is mapped
into a fuzzy set U, and each element in the set is a fuzzy member-
ship degree relative to X7, that is:

U=UUJ “4)

In the second step, a crossover point is selected, and the fuzzy
membership degree is nonlinear transformed with the membership
degree u. corresponding to the crossover point u. as the boundary:

My = Er (#rj) ®)

where o represents the number of image acquisition times.

Start
4’| Select n seed point |
| |
\f" =12

§ there any edge point in the nxn window centered oi
the seed point

entered on this edge point 3 x 3 is there any othel
edge point in the window

‘The continuous edge search near the N seed
point is conmpleted

4| NN+

Figure 1. Image acquisition model of crop precision sowing.
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The third step is to carry out fuzzy inverse mapping and map
the obtained fuzzy membership to the image domain:

m, =T(4) ©)

where 7»(.) is often taken as the inverse transformation of 71(.) in
equation (1). The final output result is:

X' = [ng;]um ™

where 7 is the central fusion degree. Build the edge retention model
of crop precision sowing image, analyse the correlation informa-
tion detection model of multiple high-frequency sub-band crop
precision sowing images through statistical information analysis
method, take p¢-R as the pixel clustering centre of crop precision
sowing image, and analyse the key information feature points z of
crop precision sowing image based on sparse feature expression
method. The edge scale of high-frequency fusion of crop precision
sowing image is obtained by using the method of central pixel
fusion:

Team(z) = fliness(x)—arg(z + p° - R) ®)

In the method of low-frequency component fusion, the regular
feature quantity of crop precision sowing image is obtained. The
method of threshold matching is established, and the detail fusion
model of crop precision sowing source image is constructed. The
extraction results of crop precision sowing texture features are as
follows:

sim(x,p‘—R):ExxTeam(z) 9

=

In block area, MxN, get the sub-block feature distribution set
of the texture feature distribution of the crop precision sowing
image, extract the edge contour feature of the crop precision sow-
ing image under the machine vision, and improve the optimal
acquisition and information extraction ability of the crop precision
sowing image.

Crop sowing image pre-processing

In order to realise the research on the key technology of crop
precision sowing, it is necessary to pre-process the obtained crop
sowing image. In the crop sowing area, in the application of
machine vision technology, the initialisation stage of visual navi-
gation is unknown, so it is impossible to distinguish the images
between crops and soil, and compared with other images, the crop
sowing images have more obvious diversity and inconsistency
(Akhter et al., 2020; Zhao et al., 2022). Given this characteristic,
it is necessary to segment the image and process the grey image
level when extracting the region and detecting the subsequent
accuracy.

In the crop sowing area, observe the crop sowing through
machine vision navigation, which is basically green, while the
colour of the soil and surrounding environment is non-green.
Therefore, based on this feature, in the crop sowing image, the
original three-dimensional colour image is transformed into a one-
dimensional grey image based on the feature of 2grb colour.
Through the above operation and processing, it can reduce the data
processing volume of later precision detection and further high-
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light the information of crops. After grey processing, the grey
image histogram of crops is shown in Figure 2.

As shown in Figure 2, there are obvious peaks in the image,
but the valleys are not evident, and the corresponding areas are dif-
ficult to judge intuitively. At the same time, the grey value of the
crop sowing area is usually large, while the grey value of other
areas is small (Yang et al., 2021; Zheng et al., 2021).

After the greyscale processing of the crop sowing image is com-
pleted, it is segmented on this basis. Based on the basic idea of sub-
region independent segmentation, this paper uses the combination of
dynamic threshold and region segmentation to segment the relatively
complex crop sowing image. The Otsu algorithm is used to select the
threshold of the image area to be detected (Li ef al., 2017; Zhang et
al.,2021). In order to improve the accuracy of subsequent detection,
noise reduction is also required for this area. Then, combination 3x3,
extract the machine vision navigation line and corresponding discrete
points and set the crop sowing image size to MxN. In this way, the
pre-processing of crop-sowing image is completed according to the
above contents, which provides a basis for subsequent target area
extraction and accuracy detection (Tian et al., 2021).

Extraction of planting area

Based on the above image pre-processing, the crop planting
area is extracted.

Spectral angle matching

Through the spectral angle matching method, the time series
curve corresponding to the pixel in the crop index time series data
set is calculated (Gao et al., 2020), and then the included angle
value 0; between the two curves is obtained:

8 =cos[X, Y/ | X,|"| Y] (10)

where X; represents the time series curve corresponding to the i-th
pixel, and Y represents the reference curve compared with it.

According to the above analysis, the above formula is trans-
formed into the following formula:

n

9=amcosz.x§yi/ zxjyf an
J A5
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Figure 2. Histogram of grey image of crop sowing.

OPEN aACCESS




cpress

where xj; represents the j-th vector point in the sequence curve
composed of the i-th pixel, y; represents the j-th vector point in the
reference curve, and n represents the number of time nodes.

Threshold selection

According to the spectral angle value obtained from the above
calculation, the rule remote sensing image threshold can be
obtained (Abdollahzadeh et al., 2021). The crop index time series
curve corresponding to a sample is used as a vector, and the includ-
ed angle radian between the sample and the time series curve is
obtained through the following formula (12), that is, the included
angle between 6y line X and Y of the crop index time curve of sam-
ple point k:

6, =arccos(X, - YY/ | X, || Y| (12)

Calculate the included angle corresponding to the sample
point, and then calculate the average value ¢ of all included angles
and the standard deviation ¢ of all included angles:

§=20,‘/m (13)

1 m
s it — 5 14
o [mg () (14)

where m represents the number of sample points, and the sum of
the average value ¢ of the included angle and the standard devia-
tion o of the included angle is the threshold &, which is calculated
as follows:

E=0+0 (15)

Extraction of planting area

Based on the above-calculated threshold data, the average
value and standard deviation of the angle between the time series
curve and the sample are obtained, which are Jdngyr and onprr,
respectively. Furthermore, the average value and standard devia-
tion of the angle between the time series reference curve and the
sample point of the whole planting area can also be obtained,
which are dgyrand gy, respectively.

ey =0.146

Oy = 0.051

B8y =0.171

o, =0.064 (16)

The threshold ¢ corresponding to the crop area in the study area
is calculated through the standard deviation ¢ and the average
value J. The threshold dnxpyr and egyr of the rule image are obtained
based on the NDVI time series data set and EBI time series set. The
calculation formulas are as follows:

amn

Enprr = Onpyr T Onpyy
Epyy =Opy + Oy

OPEN 8ACCE55

Compare the threshold value & with the spectral angle value 6i.
If the spectral angle value 6 is less than the threshold value &, set
the target figure in the i-th pixel. Then, the target pixel is extracted
by using the rule image obtained by the threshold enpys based on
the NDVI time series data set (Towers and Poblete-Echeverria,
2021). Using the rule image obtained by threshold egy7 combined
with EVI time series data set, the target pixel is extracted, and the
extraction results of fertilisation area in the planting area are
obtained through these two groups of data.

Monitoring of fertilisation uniformity in precision sowing area

The main process of monitoring fertilisation uniformity in pre-
cision sowing areas is as follows: 1) Panchromatic data and multi-
spectral fusion are carried out based on obtaining remote sensing
images of planting areas (Addesso et al., 2020); ii) For the fused
remote sensing image, the first principal component monochrome
map / is extracted by principal component analysis; iii) The water-
shed method is introduced into the process of fertiliser uniformity
monitoring (Alfarisy et al., 2020), the first principal component
monochrome map / is segmented and processed, and the super-
pixel object is extracted; iv) the feature group of the monitoring
area is constructed, including contour feature similarity, brightness
feature similarity, and texture feature similarity; v) through the
characteristic group, fertilisation uniformity monitoring is com-
pleted based on the random forest principle.

The monitoring process of fertilisation uniformity monitoring
method in precision sowing area is shown in Figure 3.

Start
I |
Four band High resolution
multispectral image panchromatic image
A
Fusion image
First principal Second Third
component component component
Watmhc_d | Superpixel
segmentation
! I
Texture Brightness Qutline
] ] '
Characteristic Random forest
importance classification

(_End )

Figure 3. Flow chart of fertiliser uniformity monitoring.
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Image segmentation

The concept of superpixel is introduced into the image pro-
cessing of crop precision sowing. The superpixel image is obtained
by the watershed segmentation algorithm.

In order to approximate the segmentation degree and verify the
consistency between super-pixel and manual segmentation results,
the monitoring method of fertilisation uniformity in precision sow-
ing area adopts the method based on contour measurement (Yu et
al., 2021). Set the segmentation parameters. When the threshold 7
is 3, the segmentation effect of the remote-sensing image is the
best. When £ increases (k indicates the number of superpixels), the
data to be processed also increases, which affects the efficiency of
remote sensing image segmentation. In fertilisation uniformity
monitoring, the precision sowing area fertilisation uniformity
monitoring method sets the number of superpixels £ to 1273,
which can effectively complete the segmentation of remote sens-
ing image of the planting area.

Feature set construction

Texture similarity

Calculate the y2-distance (also known as chi-square distance)
between the histogram of super-pixel area, and the formula is as
follows:

Banel4:(3,)]

T(g,s)=1g P, [4,(9,5)] (18)

where 7(q,s) represents the texture similarity of the two superpixel
regions, q represents all superpixel objects as a whole, s represents
the area of manual segmentation, d7(g,s) represents the y? distance
between the area of manual segmentation result s and the texture
histogram of the superpixel object ¢, Psame represents the existence
of superpixels in the manual segmentation region, and Pgj repre-
sents the existence of superpixels outside the manual segmentation
region.

The sum of texture similarity of all super-pixel objects in the
artificially segmented planting and fertilisation area is 71=) 7(q,s);
The sum of texture similarity of all super-pixel objects outside the
artificially segmented planting and fertilisation area is 7>=)7(q,s).

If the distance between several superpixels and the segmentation
target is very close, the average value of their similarity can be taken.

Brightness similarity

The brightness description operator can reflect the histogram
corresponding to the brightness values of different regions. Then,
calculate the y? distance between the histograms of each region,
and normalise its logarithm.

The sum of the brightness similarity of all superpixel objects in
the artificially segmented planting and fertilisation area is Bi; The
sum of the brightness similarity of all super-pixel objects outside
the artificially segmented planting and fertilisation area is By.

Contour energy

In order to reduce the adverse effect of the gradient region of the
shadow image on the region boundary, the directional energy
method is decided to detect the complex boundary more accurately.

The formula for calculating directional energy is as follows:
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OE, =(Ix f,,)* +(Ix f,,)’ (19)

OEy represents the direction of energy in each pixel. When the
value of direction angle 6 is 0, the maximum value of direction
energy is OFy. by rotating fi and f3 (where fi is the derivative of /'
Gaussian function and £ is the edge contrast calculated by fi based
on filtering), if the value of all pixels adjacent to OEp under one
direction scale is less than or equal to OFy, the direction energy is
the maximum value. If the value of all pixels adjacent to OFp is
greater than OEy in one direction scale, the maximum value is OEj.

Set the possibility value Pco, through a nonlinear transforma-
tion in the interval [0,1]:

(@)

Pcou = E)’}U(- EH ) (20)
a

where in order to reduce the noise caused by ¢ affecting the defi-
nition of remote sensing image, this paper decides to take the value
of o as 0.04 according to the data such as noise type, intensity, and
remote sensing image target.

All superpixels are not in the divided area, but Peo, and E> are
on the edge, and all superpixels are Py, and E in the divided area.

Monitoring of fertilization uniformity in the planting area

The monitoring method of fertilisation uniformity in preci-
sion sowing area is realised by the random forest method (Guo
et al., 2021).

The booting method, also known as the bagging method, is the
main central idea of random forest classification. The general steps
are as follows: extract several different samples from the original
data set, randomly classify them according to the sample charac-
teristics, and construct a complete classification tree. The detailed
process is as follows: i) a super-pixel sample is randomly placed
back while taking a super-pixel sample. k represents the total num-
ber of super-pixel samples. Assuming 500 times of extraction,
N=500. Repeat this step to get a set of ntree super-pixel samples.

Because the accuracy will increase with the increase of the
number of generated sample sets, however, the relevant processing
data will also increase. Therefore, to balance the relationship
between the two, ntree is selected as 100 according to the remote
sensing image data, that is, ntree = 100. ii) Build a decision tree -
using the six feature attributes 71, 73, B1, B2, E1, and E> constructed
above, continue to construct the classification tree; iii) all sample
sets repeat the first two steps to form a randomly classified forest;
iv) if there are other remaining samples, their characteristics are
determined by voting. When using the bagging method (Buthelezi
et al., 2020) to extract several sample sets with differences in the
most original data set, it is required to quantitatively extract 63%
of the most original sample set each time, and the extracted sam-
ples are called out of the bag (OOB).

In order to ensure the effectiveness of the above random forest
classification method, it is decided to randomly extract a feature,
record it as £, and test it. The calculation formula is as follows:

N(@ = C;'(')) 2 N, = c.',fm)

F(t) = Z
@ | B |B|

@n
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where ¢ represents the decision tree, B represents the data set of
OOB, ci” and c;/" represents the determination of x; category of
samples before and after feature f'is removed, and N represents the
counting function.

The uniformity measure of precision sowing areca can be
obtained from the average value of the importance of all decision
trees:

i 30 22)

F Ntree

According to the uniformity measurement of precision sowing
area, we can know the growth trend of the existing planting pro-
cess, which is the key technology to realising precision sowing of
crops. After crop image pre-processing, the corresponding his-
togram is established according to the pre-processed image. By
analysing the difference between the crop area and the growth
background, the image is greyed by using the segmentation thresh-
old method to determine the best threshold in the image so that the
image has a good recognition effect. Finally, according to the
growth height and growth colour analysis of the crop in the image,
the growth trend of the crop is judged to realise the analysis and
prediction of crop growth and provide a reference basis for the
realisation of accurate planting of crops (Xie et al., 2022).

Comparative experiment

Based on the introduction of machine vision technology, the
above discussion proposed a precision sowing technology for crop
sowing. In order to verify the effect of this method in practical
application, the above sowing technology and the sowing technol-
ogy of intelligent agricultural precision monitoring system are
used in the same experimental environment, and their application
effects are compared. Delphi7 is used to develop the system, and
AVICap class in Delphi7 is used to create a video capture window
in overlay mode to complete the call of the upper computer to the
camera software development kit, which can effectively realize the
real-time continuous transmission and display of video and image
data after each sowing of the seed metering device. The image

acquisition results of the crop planting area are shown in Figure 4.
In order to facilitate the discussion, the sowing technology based
on machine vision is set as the experimental group, and the sowing
technology of an intelligent agricultural precision monitoring sys-
tem is set as the control group.

Experimental setup

The experimental environment comprises a driver, crop seed-
ing box, seed box, capacitive sensor, bench, stepping motor, and
other structures. The stepping motor with model 86BYGH250D
and the driver with model HB-860H are used in the experiment, as
shown in Figure 5. The seeder model is a petrol engine, and the
six-row seeder is shown in Figure 6. The capacitive sensor with
model CR18 is shown in Figure 7. The speed of seed metering
wheel is adjusted by stepping motor, to control the flow of crops.
The capacitance sensor device is used to collect the capacitance,
and all the obtained data information is uploaded to the host com-
puter to complete the comparison and analysis of the application
effect of sowing technology. The control group method and the
experimental group were used to record and count the data
obtained from the experiment. Excel 2022 software was used to
store and sort the collected data, and spss22.0 software was used to
analyse the data. The software provides users with data mining,
analysis, and decision-making solutions. Through SPSS 22.0 soft-
ware, users can directly analyse various data in the database and
filter out some abnormal problems with data samples and test data.

Figure 4. Image acquisition results of crop planting area.

Figure 5. 86BYGH250D stepper motor and HB-860H driver.
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Results and Discussion

The seeds sown in the experiment are corn seeds. Firstly, the
precision of seed sowing in single seed mode is detected, and the
number of crops sown at the theoretical level is obtained. Then, the
actual number of crop seeds in the receiving box is counted manu-
ally to obtain the actual number of crops. Finally, the detection
accuracy of the two groups of sowing techniques is obtained by
calculating the number of theoretical and actual crops. According
to the above experimental contents, the comparative experiment on
the detection effect of single seed sowing is completed, and the rel-
evant experimental data are recorded, as shown in Table 1.

It can be seen from the data recorded in Table 1 that the num-
ber of sown grains of crops detected by the sowing technology of
the experimental group is exactly the same as the actual number of
grains, so there is no relative error; There is an error of 10-30
grains between the number of sown grains of crops detected by the
sowing technology of the control group and the actual number of
grains, so the relative error is in the range of 1.24-3.14%. In prac-
tical application, the relative error produced by the sowing technol-
ogy of the control group will seriously affect the quality of crop
sowing, failing to achieve the expected planting effect. In contrast,

Figure 6. Petrol engine 6-Row seeder.

Table 1. Comparison of drop accuracy of a single seed.

pag

the sowing technology of the experimental group can provide a
more favourable data basis for crop sowing and ensure the planting
effect.

Estimating planting area is an important index to monitor the
uniformity of fertilisation in the planting area. Therefore, two
methods are used to estimate the planting area respectively, and the
estimation results are shown in Figure 8.

Figure 8 shows the estimated planting area of different meth-
ods. According to Figure 8, the estimated planting area of the pre-
cision planting area in the experimental group is close to the actual
planting area, while the estimated planting area of the control
group is quite different from the actual planting area. Compared
with the test results of the above methods, the data close to the
actual planting area can be obtained through the experimental
group, which shows that the estimation effect of the experimental
group is good because before the experimental group estimates the

Figure 7. CR18 capacitance sensor.

Number Actual Test the number of The number of granules Relative error Relative error
of experimental  number grains in the experimental in the control group  of experimental of control
groups of grains/piece group/piece was detected/piece group/% group/%

1 803 803 785 0 2.24

2 912 912 892 0 2.19

3 911 911 889 0 241

4 924 924 895 0 3.14

5 806 806 796 0 1.24
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OPEN a ACCESS



planting area, the pixels of the planting area are obtained by using
the spectral angle matching method. On this basis, the planting
area is estimated, and the accuracy consistent with the actual area
is improved.

Position recognition accuracy is to calculate the percentage of
correct planting position in the whole planting area.

K= lef ~Py| @)

where K represents the position recognition accuracy of precision
sowing area, P; represents the percentage of the j-th planting area
in the whole planting area measured by random forest method, Pjo
represents the proportion of the j-th planting area in the large
database area, and n represents the number of all planting areas
involved in the experiment.

By analysing the data in Figure 9, it can be seen that with the
increase of precise seeding area, the recognition rate of the seeding
position of the experimental group and the control group continues
to decline. However, under the same precise seeding area, the
recognition rate of the experimental group is between 90 and 95%,
and the recognition rate of the control group is between 85 and

90%. Therefore, the recognition rate of the experimental group is
higher than that of the control group. Table 2 shows the uniformity
measurement results of the above methods. According to the data
in Table 2, the fertilisation uniformity data obtained by the experi-
mental group is closer to the actual data than that of the control
group, and the accuracy is higher than that of the control group.
The planting area of crops has the characteristics of broken
plots, wide planted varieties, and high spatial distribution mixed
degree. In order to precisely optimise the sowing efficiency of
crops, this paper proposes a key technology for precision sowing
of crops based on the principle of vision. In order to verify the
application effect of this technology, a complete comparative
experiment was designed. The experimental results proved that the
number of seeds in the experimental group was exactly the same as
the actual number of seeds, and the sowing accuracy was ideal.
The error of the seeding technique in the control group was about
1.24-3.14%, and the application effect was worse. The estimated
planting area of the technology studied in this paper completely
accords with the actual planting area, indicating that this technolo-
gy has better practical application performance. The planting loca-
tion accuracy of the research technology can reach about 95%, and
the average sowing uniformity is 93.03%, which has obvious
advantages compared to traditional technology. Image pre-pro-

Table 2. Uniformity measurement results of fertilisation in planting areas with different methods.

1 91.61 91.58 85.62
2 92.55 92.55 86.16
3 93.25 93.25 85.96
4 92.56 92.56 86.68
5 91.59 91.59 87.89
6 94.63 94.63 85.53
7 93.65 93.65 86.64
8 94.44 94.44 84.59
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Figure 8. Estimation results of planting area by different methods.

OPEN 8ACCE55

B Experience group

[7] Control group

8BS |

KW/%

80 |

75 |

70 |

65 5 85 95
Number of precision planting areas / piece

Figure 9. Comparison of planting position accuracy of different methods.
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cessing is to check out each image to the recognition module
recognition, which is called image pre-processing. The input
image is processed in image analysis before feature extraction,
segmentation, and matching. In this paper, crop seeding image pre-
processing, crop seeding target area extraction, planting area
extraction, and precision seeding area fertilisation uniformity mon-
itoring to achieve precision sowing of crops, achieved better seed-
ing effect, image pre-processing is the basis to ensure high-preci-
sion seeding.

Conclusions

The uniformity of fertilisation in the planting area determines
the production efficiency, scientific and technological develop-
ment, economic development, and living standard quality of vari-
ous enterprises in a country, and also reflects the effectiveness of
precision planting. Based on the above discussion and the intro-
duction of machine vision technology, a new method of crop pre-
cision sowing process is proposed, and comparative experiments
verify the application effect of this method. The key technology of
precision seeding is proposed. Firstly, the crop area in the planting
area is extracted to obtain the remote sensing image of the planting
area. Then the image is classified to complete the remote sensing
monitoring of the precision seeding area, which improves the ref-
erence for monitoring of the precision planting effect and lays a
foundation for the informatisation of yield in the planting area and
the improvement of agricultural production efficiency.
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