
Abstract
Leaf pigment content can reflect the nutrient content of the

cultivation medium indirectly. To rapidly and accurately predict
the pigment content of tomato leaves, chlorophyll a, chlorophyll
b, chlorophyll and carotenoid were extracted from the leaves of
tomato seedlings cultured at different nitrogen concentrations. The
visible/near-infrared hyperspectral imaging non-destructive mea-

surement technology, 430-900 nm and 950-1650 nm, with total
variables of 794, was used to obtain the reflection spectra of
leaves. An improved strategy of the sparrow search algorithm
(SSA) based on logistic chaotic mapping was proposed, and it
optimized the back propagation neural network to predict the pig-
ment content of leaves. Different pretreatment methods were used
to effectively improve the prediction accuracy of the model. The
results showed that when the nitrogen concentration in the nutrient
solution was 302.84 mg·L-1, the pigment content of the leaves
reached its maximum. Meanwhile, the inhibition effect of high
concentrations was much stronger than that of low concentrations.
To address the problem that the SSA is prone to premature conver-
gence due to the reduction of population diversity at the end of the
iteration, the initialization of the SSA population by logistic chaot-
ic mapping improves the initial solution quality, convergence
speed, and search capacity. The root mean squared error (RMSE),
coefficient of determination (R2) and relative percent deviation
(RPD) of chlorophyll a were 0.77, 0.77, and 2.08, respectively.
The RMSE, R2 and RPD of chlorophyll b were 0.30, 0.66, and
1.71, respectively. The RMSE, R2 and RPD of chlorophyll were
0.88, 0.81, and 2.28, respectively. The RMSE, R2 and RPD of
carotenoid were 0.14, 0.75, and 2.00, respectively. Hyperspectral
imaging technology combined with machine learning algorithms
can achieve rapid and accurate prediction of crop physiological
information, providing data support for the precise management of
fertilization in facility agriculture, which is conducive to improv-
ing the quality and output of tomatoes.

Introduction
Nitrogen is an essential element for tomato growth and devel-

opment. Appropriate nitrogen concentration can promote the
growth of stem and leaf, pigment synthesis, photosynthetic rate,
and organic matter conversion efficiency, and effectively improve
the quality and output of tomatoes (Fontes et al., 1997). If tomato
seedlings are deficient in nitrogen, plant growth is retarded, flower
bud differentiation is low, stems and leaves are small, and growth
and development are inhibited. If there is an excess of nitrogen,
the plant grows wildly, with large leaves but stunted roots, leading
to a decrease in resistance, an irreversible process (Baglieri et al.,
2014). Therefore, exploring the optimal nitrogen concentration of
fertilization in the tomato seedling stage is the basis of the preci-
sion management of facility agriculture. According to the princi-
ple of plant physiology, plant leaves are the most sensitive to
nitrogen, and the nitrogen content in the cultivation medium will
cause the difference in pigment content in the leaves (Flores et al.,
2001). By detecting pigments in leaves, we can indirectly diag-
nose the nitrogen deficiency of plants. Visible/near-infrared
(VIS/NIR) hyperspectral imaging (HIS) is an effective technique
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for rapid and non-invasive analysis to obtain the required continu-
ous spectral and image information. In recent years, using spectral
analysis to obtain physiological information about crops has grad-
ually become a research focus.

The reflectance of plant leaves is mainly determined by the
surface properties and internal structure of the leaves, as well as by
the concentration and distribution of chemical components. In the
visible spectral range (400-750 nm), it is mainly the absorption of
photosynthetic pigments in the leaves. In the short wavelength near
infrared (750-1300 nm), there is no strong absorption feature, and
the reflectance is determined by the discontinuous structure
encountered in the leaves. The long wavelength near-infrared
(1300-2500 nm) is mainly related to the absorption characteristics
of water and other compounds (Yao et al., 2009). Various biochem-
ical factors, such as the content of pigment and nutrients, have
been found to affect the optical properties of tissues (Xu et al.,
2007). Due to physiological stress, the spectra of plant leaves
change in both the visible and near-infrared regions (Xu et al.,
2007). The nitrogen concentration in the culture medium can
directly affect the pigment content and its distribution in the
leaves, which in turn affects the internal structure of the leaves.
Owing to the large dimension of the hyperspectral detection data,
the strategy of key band screening can reduce the amount of mod-
eling data (Ouyang et al., 2021). However, it may lead to the loss
of valid information, resulting in low prediction accuracy and
insufficient generalization ability of the model. Therefore, HSI
non-destructive measurement technology combined with machine
learning algorithms is being more and more widely applied to the
detection of agricultural information and agricultural products (Li
et al., 2018; Wang et al., 2021). 

The back propagation (BP) neural network algorithm has good
self-learning, self-adaptation, generalization, and fault tolerance
capabilities, but it has some drawbacks of slow convergence speed
and local miniaturization (Zhang and Lou, 2021). To solve these
problems, the optimization algorithm can optimize and reconstruct
the BP network. At present, the classical population optimization
algorithms include particle swarm optimization, ant colony opti-
mization and bee colony optimization. The sparrow search algo-
rithm (SSA) is a new population optimization algorithm designed
with the idea of collaborative search of sparrow populations in for-
aging (Xue et al., 2020). It has the advantages of fewer iterations,
faster convergence, and higher search efficiency. Tuerxun et al.
(2021) used SSA to optimize the penalty factor and kernel function
parameters of the support vector machine (SVM) and established
the SSA-SVM fault diagnosis model of the wind turbine. Zhang et
al. (2022) put forward an aberration optimization method based on
the SSA. The results show that the aberration combination distri-
bution optimized by the SSA method is more remarkable than that
under zero aberration. Fathy et al. (2022) proposed that SSA be
applied to manage the operation of the power grid system in the
best manner. The results show that SSA can effectively reduce the
cost and emissions of power grid energy management and has
good robustness. The above results show that the SSA has the
advantages of fewer iterations, faster convergence speed, and high-
er search efficiency. At present, it has been widely applied in the
fields of system diagnosis, image processing, mechanical analysis,
and so on. However, compared with other optimization algorithms,
it is easy to get into premature convergence due to the reduction of
population diversity at the end of the iteration. Yuan et al. (2021)
proposed to initialize the population using the gravity center
reverse learning mechanism to make the population have a better
spatial solution distribution. Gao et al. (2022) proposed to opti-
mize the diversity of population initialization with 10 chaotic map-

ping, which accelerated the convergence rate and improved the
convergence accuracy of the algorithm. Combined with the greedy
strategy, the ability of the algorithm to deal with the locally opti-
mal solution is improved, and each sparrow is fully utilized. Yan et
al. (2021) proposed to improve SSA by adopting an iterative local
search strategy. In the local search stage, the improved iterative
local search strategy is adopted to improve the search accuracy and
prevent missing the optimal solution.

In this study, chlorophyll a, chlorophyll b, chlorophyll and
carotenoid in the leaves of tomato seedlings were researched. The
nutrient solution was prepared with 10 kinds of nitrogen concen-
trations, and the leaves were picked for VIS/NIR hyperspectral
collection. Aiming at the problems in the SSA, the logistic chaotic
mapping strategy was proposed to improve population initializa-
tion and establish the logistic-SSA-BP prediction model. Different
pretreatment methods were adopted for different pigments to
improve the prediction accuracy of the model and to explore the
optimum nitrogen concentration of the nutrient solution in the
greenhouse tomato seedling stage and the prediction effect of the
optimization algorithm.

Materials and Methods
Experimental design and sample collection

The experiment was carried out in the scientific greenhouse of
the College of Agricultural Engineering, Shanxi Agricultural
University, on November 12, 2021. Tomato seedlings (Provence),
purchased from the seedling company, were grown in the trans-
planting pot (diameter of 23.8 cm and height of 19.5 cm) on
coconut chaff. The nutrient solution was a water-soluble fertilizer
formulated by the Netherlands Institute of Greenhouse
Horticulture. A total of 10 nitrogen concentrations (nitrogen con-
centration range of 59.64~605.68 mg·L-1, step length of 60 mg·L-

1, denote: N20, N40, N60, N80, N100, N120, N140, N160, N180,
N200) were adjusted with urea. Ca2+ was supplemented with pure
calcium fertilizer (Ca2+≥94%), keeping the Ca2+ concentration
consistent. 

A total of 10 plants were cultivated at all concentrations,
except for 5 plants at the N200 concentration, for a total of 95
plants. When tomato plants bloom by more than 50%, they are
identified as reaching the flowering stage. Tomato leaves were
sampled at the ‘transplant-flowering’ stage (December 13, 2021).
At this time, the main stem stretched out 10-11 branches, and the
tomato leaves were arranged according to Figure 1A. Among
them, 9-7 branches were in the upper position, 6-4 branches were
in the middle position, and 3-1 branches were in the lower position.
The branches and leaves of tomatoes are “single-branch and multi-
leaf”. To obtain a sample of the corresponding leaf position as
comprehensively as possible, refer to the marked parts for sam-
pling in Figure 1B. According to the position of the leaves, a total
of 1710 leaves (285 samples) of uniform size were collected (6
leaves for each sample). The samples were placed in sealed bags,
numbered, and stored in an incubator filled with dry ice.

Hyperspectral imaging system
Leaf images were collected by the VIS/NIR hyperspectral

scanning platform (Headwall Photonics, Boston, MA, USA). This
system (Figure 1C) mainly includes 2 hyperspectral imagers, a lift-
ing platform, a light source, a controller, a scanning platform con-
trolled by a stepper motor, and a military computer. The resolution
of the hyperspectral imager in the spectral range of 380-1000 nm

                             Article

[page 394]                                           [Journal of Agricultural Engineering 2023; LIV:1528]                                                            

Non
-co

mmerc
ial

 us
e o

nly



and 900-1700 nm is 0.727 nm and 4.715 nm, respectively. Due to
the noise near the measuring range of the imager, a total of 794
variables in the spectral range of 430-900 nm and 950-1650 nm are
intercepted as effective variables for modeling. System parameter
settings: the movement speed was 2.721 mm·s-1, the advance
stroke was 100 mm, and the distance from the lens to the leaf was
28 cm, to obtain a clear and distortion-free image.

To reduce the interference of the system light source and dark
current on the image, the black-and-white correction of the HSI is
carried out according to Eq. 1. Firstly, the dust and impurities on
the leaf surface were washed clean with deionized water. Secondly,
use filter paper to absorb the moisture on the surface. Finally, put
3 leaves on the stage. Two hyperspectral images were collected
from each sample.

                                                                    
(1)

where R represents the image obtained after correction, R0 repre-
sents the original image, Rw represents the whiteboard calibration
image (>99.9% reflectance), and Rb represents the dark back-
ground calibration image (<0% reflectance).

Determination of leaf pigment content
After collecting spectral images of the samples, the contents of

chlorophyll a, chlorophyll b, chlorophyll and carotenoid were mea-
sured by a spectrophotometer (Wellburn, 1994). After removing
the leaf veins, each sample was cut into small pieces of about 2×2
mm, mixed, weighed 0.2 g, and poured into a test tube. First, 10
mL of anhydrous ethanol was added, shaken well, and extracted in
the dark room for 10 hours. Then, 10 mL of anhydrous ethanol was
extracted for 14 hours. Finally, 5 mL of anhydrous ethanol in a
constant volume. The absorbance values of the prepared pigment

extract were measured at wavelengths of 665 nm, 649 nm, and 470
nm, respectively. Each sample was repeated 3 times. The pigment
content is calculated according to Eqs. 2-5: 

Chla = 13.95 × A665 - 6.88 × A649                                   (2)

Chlb = 24.96 × A649 - 7.32 × A665                                   (3)

Chll = Chla + Chlb                                                                (4)
                                                                                              

        
(5)

where Chla, Chlb, Chll and Caro represent chlorophyll a, chloro-
phyll b, chlorophyll and carotenoid content, respectively. A665, A649
and A470 represent the absorbance of the solution to be measured
wavelengths at 665 nm, 649 nm and 470 nm, respectively.

Logistic improved sparrow search algorithm
SSA is based on the cooperative layout of the sparrow popula-

tion in the form of predators, followers, and warnings in the pro-
cess of finding food. The population simulates sparrow individuals
in matrix form, expressed as follows (Eq. 6):

        

(6)

where Xdn represents the position of sparrows, n represents the
number of sparrows, and d represents the dimension of variable
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Figure 1. Sampling rules and hyperspectral imaging system. A) Main stem and tomato leaves; B) marked parts for sampling; ) system
including 2 hyperspectral imagers, an adjustable lifting platform, illumination, a controller, a mobile platform controlled by a stepper
motor, and a military computer.
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space. The population fitness value is expressed as (Eq. 7):

      

(7)

where Fx represents the individual fitness value of the sparrow.
Aiming at the existing problems of SSA, the logistic chaotic

mapping strategy was proposed to initialize the population. It
increases the population diversity, makes the population distribu-
tion more uniform, and improves the initial solution quality of the
population, thus upgrading the optimization efficiency and ergod-
icity of the algorithm. Its expression is as follows (Eq. 8):

X (t + 1) = m × X (t) × (1 – X(t))                                            (8)

where X (t+1)∈[0, 1]. m∈[0, 4] represent logistic parameters.
According to relevant literature (Kanso and Smaoui, 2009), the
closer to 4, the uniform distribution of X in the [0, 1] region, that
is, the complete chaotic state, so m= 4; t is the iteration time step.

The role of predators is to provide searching direction for the
foraging. In the process of searching for food (optimization),
predators with higher adaptability get food first, so the predator has
a larger search space. In the iterative optimization process, the
position of the predator is expressed as (Eq. 9):

             
(9)

where Xi,j represents the spatial position information of the i-th
sparrow in the j-th dimension. t represents the current iteration
number. α∈(0, 1] random number. intermax represents the maxi-
mum number of iterations (set to 20). Q is a random number that
obeys the normal distribution. L represents a 1×d matrix with all
elements of 1. R2∈ [0, 1] is the warning value. ST∈[0.5, 1] is a safe
value (set to 0.8). When R2<ST, the search space is safe, and preda-
tors can widely search for food. When R2≥ST, the predator finds an
alarm in the search space, and alert the community to fly away
quickly. During foraging, the follower watches the predator in real
time. If the predator finds food, the follower quickly occupies the
best position for foraging, and its position is expressed as (Eq. 10):

      

(10)

where Xworst represents the worst position in the current population
space. Xp indicates the best position of the current predator. A is a
1×d matrix expressed as 1 and -1. When i>0.5n, followers with low
fitness values cannot catch food, so they need to search other areas
for food. When i≤0.5n, followers will forage in the best position.

A certain number of sparrows in the population are randomly
selected as warnings agents to assume the warning function. Its
position is expressed as (Eq. 11):

   

(11)

where Xbest represents the best position of the current population
space. β represents the step size control parameter, which is a ran-
dom number with standard normal distribution. The random num-
ber of k∈[-1, 1]. fi is the individual fitness value of the current pop-
ulation. fg and fw are the best and worst fitness values of the current
population space, respectively. ε represents a constant (set to 10-8)
to avoid the model being meaningless.

Logistic-sparrow search algorithm-back propaga-
tion model and evaluation index

In the logistic-SSA optimization algorithm, the ratio of preda-
tor, follower and warning was set to 0.7:0.3:0.2. When the maxi-
mum number of iterations was reached, the optimal fitness value
outputs the optimal solution, so as to optimize the weights and
thresholds of the BP neural network. The error BP was used for
iterative training, and the preset effect was achieved.

The logistic-SSA-BP model flow is shown in Figure 2. The
node number of the input layer, hidden layer and output layer of
the BP neural network was 794, 30 and 1, respectively. This net-
work has 2 layers, where the number of thresholds and weights in
the first layer were set to 23,820 and 30, and the thresholds and
weights in the second layer were set to 30 and 1. The settings of
each parameter are shown in Table 1. In this paper, the fitness func-
tion is expressed as (Eq. 12):

f = argmin(mse(TE)+MSE(PE))                                           (12)

where TE and PE are training set and prediction set errors, respec-
tively, and mse is the mean square error function. The smaller the
mean square error, that is, the smaller the fitness function value,
indicating the higher the prediction accuracy of the model.

The root mean squared error (RMSE), coefficient of determi-
nation (R2) and relative percent deviation (RPD) evaluated the pre-
diction potential and performance of the models. The smaller the
RMSE, the higher the prediction accuracy. The closer R is to 1, the
higher the prediction accuracy is. When RPD>2, it indicates that
the model achieves a better prediction effect on the index. When
1.4<RPD<2, it indicates that the model can predict the index to a
certain extent. When RPD<1.4, it indicates that the model cannot
predict the index (Wang et al., 2019) (Eqs. 13-15).

                             Article

Table 1. Parameters of the back propagation neural network
model.

Parameters                     Network function and parameter size

Hidden layer function                                          Logsig
Output layer function                                           Purelin
Training function                                                Traingdx
Maximum steps of training                                    300
Training accuracy                                                   0.01
Learning rate                                                           0.1
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(13)

                            
(14)

                                
(15)

where n represents the number of samples, yi represents the actual
value of physical and chemical experiments of samples, ŷi repre-
sents the predicted value of the sample model, and  represents the
average value of yi.

Results and Discussion

Analysis on the change law of leaf pigment content
The concentration of nitrogen in nutrient solutions affects the

absorption and assimilation potential of crops. The effects of dif-
ferent concentrations of nutritional solution nitrogen on the pig-
ment content of tomato leaves are significantly different, as shown
in Figure 3A. When the nitrogen concentration in the nutrient solu-
tion (N100) was 302.84 mg·L-1, the pigment content in the leaves
reached its maximum. When the concentration was less than
302.84 mg·L-1, with the increase in concentration, the maximum
growth rates of chlorophyll a, chlorophyll b, chlorophyll and
carotenoid reached 14.29%, 20.75%, 17.45%, and 17.85%, respec-
tively. When the concentration was greater than 302.84 mg·L-1,
with the increase of concentration, the maximum decrease rates of
chlorophyll a, chlorophyll b, chlorophyll and carotenoid reached
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Figure 2. Flow chart of logistic-sparrow search algorithm-back propagation neural network.

Figure 3. Effects of different nitrogen concentration on different positions of tomato leaves.  
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16.35%, 21.74%, 17.78% and 27.40%, respectively. This is
because the optimum concentration of nitrogen can maintain the
balance of nutrients in plants. Too high or too low will upset this
balance and inhibit the growth and development of crops. The
results showed that the inhibitory effect of high concentrations was
stronger than that of low concentrations. At the same time, nutri-
ents are easily transferred during the process of crop growth and
development, resulting in differences in pigment contents in toma-
to leaves, as shown in Figure 3B. When the leaf was from the
upper to the middle, the decrease rates of chlorophyll a, chloro-
phyll b and chlorophyll were the same, about 7.92%, while the
decrease rate of carotenoid content was 13.5%. When the leaf posi-
tion was from the middle to the low, the decrease rates of chloro-
phyll a, chlorophyll b, chlorophyll and carotenoid were the same,
reaching about 19.12%. This indicates that the plant is in a vigor-
ous growth stage.

Extraction of spectral data and spectral response
characteristics of leaves

As there are many pixels in the image collected by the spectral
imager, it is difficult to extract and process these data. To simplify
this process, batch extraction and processing software of HSI was
developed for SpectralView software. Use the ellipse model to
select the center coordinate, x/y semi-axis length, and x/y axis
interval of the image region of interest (ROI). Generate a coordi-
nate matrix of the ROI on the target image. Importing images
through SpectralView follows the principle of “from left to right,
from top to bottom”, and actively extracts ROI information from
images. Then, the spectral information of different bands of each
pixel was output in batches as an arithmetic average, as shown in
Figure 4. Because the resolutions of the hyperspectral imager are
different, the number of pixels taken is also different. At 430-900
nm and 950-1650 nm, 18810 and 2130 pixels were extracted from
each leaf, i.e., 112860 (18810×6) and 12780 (2130×6) pixels were
extracted from each sample, and the average spectral reflectance
was output in batches. Different nitrogen concentrations of nutrient
solutions and pigment contents in different leaves are quite differ-
ent, which leads to great differences in the spectral reflectance of

samples treated with different treatments. Figure 4 shows the
response curves of leaves at 430-900 nm and 950-1650 nm. There
is a strong absorption area of chlorophyll and carotenoid at 490 nm
(Wang et al., 2019). There is a strong reflection region of chloro-
phyll at 550 nm. There is a strong absorption area of chlorophyll at
680 nm. There are obvious wave point fluctuations in 750-900 nm,
that are related to the absorption of water or oxygen (Schmilovitch
et al., 2014). There is a second harmonic generation (SHG) of free
O-H groups stretching vibration at 980 nm (Kostin et al., 2015).
There is the harmonic generation and combined spectral band of
the C-H groups stretching vibration at 1200 nm (Sankar et al.,
2010). There is the SHG of the O-H bond in water molecules at
1450 nm (Huang et al., 2013).

Dataset partition
The SPXY algorithm, which comprehensively considers the

differences between the spectral characteristics and physicochem-
ical properties of the samples, was used to divide the dataset
(Galvao et al., 2005). As shown in Table 2, the sample mean values
of the training set and the prediction set were almost the same,
indicating the rationality of the dataset partition.

Prediction of leaf pigment content
For chlorophyll a, chlorophyll b, chlorophyll and carotenoid,

Figure 5 and Table 3 show the changes in iterations and fitness val-
ues of logistic-SSA and SSA. From the iterative results, it can be
seen that logistic-SSA obviously improves the quality of the initial
solution of the population, and effectively increases the diversity
of the population. With the increase in iterations, the early conver-
gence rate was obviously improved, which indicates that the global
searching capability of the population was optimized. Although the
number of optimization iterations has increased, the optimization
accuracy has been improved; that is, the optimal fitness value is
obviously lower than that of SSA. The chlorophyll a, chlorophyll
b, chlorophyll and carotenoid decreased by 0.03, 0.02, 0.01, and
0.02, respectively. The results show that the logistic chaotic map-
ping strategy can effectively improve the searching performance of
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Figure 4. Spectral response curve of tomato leaves.
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the SSA population. In the process of spectral scanning, factors
such as leaf state, measurement environment, instrument response,
etc. will cause the spectral baseline to shift, thus affecting the pre-
diction accuracy of the model. The Savitsky-Golay (S-G), standard
normal variable (SNV), and multiple scattering correction (MSC)
were used to eliminate multiple linear errors caused by leaf surface
scattering, optical path change, and interference among compo-
nents. Through logistic-SSA iterative optimization, the weights

and thresholds of the BP neural network from the input layer to the
hidden layer and from the hidden layer to the output layer are opti-
mized, respectively, to obtain the optimal solution for optimal fit-
ness output. The contents of chlorophyll a, chlorophyll b, chloro-
phyll, and carotenoid were predicted through the reconstruction of
the BP network. The prediction accuracy results of different pre-
treatment methods for the raw data are shown in Table 4. For
chlorophyll a, the optimal prediction was obtained by combining
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Table 3. Optimal iteration times and fitness value of logistic-sparrow search algorithm and sparrow search algorithm for leaf pigment
index.

Pigments                                             Logistic-SSA                                                                                                    SSA
                                    1st      Optimal number of iterations       Best fitness value               1st        Optimal number of iterations         Best fitness value

Chlorophyll a              0.17                            15                                           0.10                          0.15                               6                                              0.13
Chlorophyll b              0.15                            17                                           0.11                          0.14                              15                                             0.13
Chlorophyll                 0.21                            19                                           0.11                          0.17                              13                                             0.13
Carotenoid                  0.16                            14                                           0.08                          0.13                              16                                             0.10
SSA, sparrow search algorithm; 1st, initial optimal fitness value of the population.

Figure 5. Comparison of iterative curves between logistic-sparrow search algorithm and sparrow search algorithm.

Table 2. Statistical results of leaf pigment content dataset.

Sample category           Pigments                     Number                   Maximum            Minimum                   Mean                         SD

Training set                          Chlorophyll a                        213                                14.72                          3.37                              8.32                              2.18
                                             Chlorophyll b                                                               4.89                           1.24                              2.86                              0.74
                                             Chlorophyll                                                                 19.62                          4.61                             11.15                             2.89
                                             Carotenoid                                                                    3.23                           0.60                              1.42                              0.44
Prediction set                       Chlorophyll a                         72                                 12.43                          5.26                              8.31                              1.69
                                             Chlorophyll b                                                               4.38                           1.80                              2.90                              0.57
                                             Chlorophyll                                                                 16.63                          6.96                             11.31                             2.22
                                             Carotenoid                                                                    2.14                           0.90                              1.40                              0.34
SD, standard deviation.
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S-G, SNV and MSC, with RMSE, R2 and RPD of 0.77, 0.77 and
2.08, respectively. For chlorophyll b, the optimal prediction was
obtained by combining S-G and MSC, with RMSE, R2 and RPD of
0.30, 0.66 and 1.71, respectively. For chlorophyll, the optimal pre-
diction was obtained by combining S-G and SNV, with RMSE, R2

and RPD of 0.88, 0.81 and 2.28, respectively. For carotenoid, the
optimal prediction was obtained by combining S-G and SNV, with
RMSE, R2 and RPD of 0.14, 0.75 and 2.00, respectively. In sum-
mary, it can be concluded that logistic-SSA-BP can achieve better
prediction for chlorophyll a, chlorophyll, and carotenoid, and to a
certain extent for chlorophyll b. The model can be used to predict
chlorophyll a, chlorophyll and carotenoid. It shows that the model
has some generalizability.

Conclusions 
In this paper, the contents of chlorophyll a, chlorophyll b,

chlorophyll and carotenoid in different leaf positions of tomato
seedlings under nutrient solution cultivation with different nitro-
gen concentrations were taken as research indexes. The prediction
model of pigment content is based on hyperspectral technology
and machine learning algorithms. To solve the problems of the
SSA in the optimization process, the logistic chaotic mapping strat-
egy was proposed to initialize the population. The logistic-opti-
mized SSA was used to optimize the weights and thresholds of the
BP neural network to establish the pigment content prediction
model. The following conclusions were mainly obtained. Firstly,
there are significant differences in the effects of different nitrogen
concentrations on the pigment content of tomato leaves. When the
nitrogen concentration is 302.84 mg·L-1, the pigment content in
leaves is the highest, and the inhibitory effect of a high concentra-
tion is stronger than that of a low concentration. It could provide
data support for precise management of fertilizer in facility agri-
culture and then improve the quality and output of tomatoes. 

Moreover, the logistic chaotic mapping strategy was adopted
to initialize the SSA population, which effectively improves the
initial solution of the population. It reduces the optimal fitness of
the population and improves the convergence speed and optimiza-
tion efficiency of the algorithm. Thereby improving the searchabil-
ity of the population.

Lastly, different combinations of pretreatment methods for dif-
ferent pigments significantly improved the accuracy of the logis-

tic-SSA-BP prediction model. The RMSE, R2 and RPD of chloro-
phyll a were 0.77, 0.77 and 2.08, respectively. The RMSE, R2 and
RPD of chlorophyll b were 0.30, 0.66 and 1.71, respectively. The
RMSE, R2 and RPD of chlorophyll were 0.88, 0.81 and 2.28,
respectively. The RMSE, R2 and RPD of carotenoid were 0.14,
0.75 and 2.00, respectively. The results show that the optimization
algorithm has a good prediction effect and universality, which pro-
vides a theoretical basis for the application of crop or agricultural
product information prediction.
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