
Abstract
Scientific methods must be used to forecast the greenhouse

microclimate, which is influenced by crop management practices
and the surrounding macroclimate, in order to produce a mar-
ketable yield. Using input parameters like indoor air temperature,
relative humidity, solar radiation, indoor roof temperature, and
indoor relative humidity, the MATLAB tool NARX was utilized in
this study to predict the strawberry yield, indoor air temperature,
relative humidity, and vapor pressure deficit. To increase the
model’s accuracy, the data were normalized. The Levenberg-
Marquardt backpropagation algorithm was used to develop the
model. A number of evaluation metrics, including the coefficient
of determination, mean square error, root mean square error, mean
absolute deviation, and Nash-Sutcliffe efficiency coefficient, were
used to assess the models’ accuracy. The outcomes demonstrated
a high degree of accuracy of the models, with no discernible vari-
ation between the experimental and predicted values. It was dis-
covered that the vapor pressure deficit model was the most signif-
icant since it affects crop metabolic activities and its precision can
be utilized as a parameter for indoor climate control.

Introduction
A greenhouse is a structure with a transparent covering that

creates a microclimate, which protects the crops grown within it
from the external macroclimate (Zakir et al., 2022). Controlled-
environment agriculture or protected cultivation allows for the
monitoring and maintenance of a desirable microclimate for each
crop and makes it possible to grow crops in the off-season,
increasing crop yield and quality. Moreover, it enables the growth
of crops in areas where the open-field macroclimate would nor-
mally not support their growth. In addition, protected cultivation
offers greater predictability and reduces the cost of production
(Russo et al., 2014; Gorjian et al., 2020; Akpenpuun et al., 2022).
Indoor agriculture, or controlled-environment plant production
system (CEPPS), has rapidly evolved from simple greenhouse
structures to high-tech plant factories that can achieve optimal
crop productivity and human labor utilization owing to recent
advances in precision technology, data processing, and smart
farming (Shamshiri et al., 2018; Uyeh et al., 2021b). Global chal-
lenges that greenhouse technology seeks to address include food
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scarcity fuel scarcity, natural resources scarcity, environmental
pollution, and ecosystem instability (Kozai et al., 1997;
Akpenpuun et al., 2020; Ogunlowo et al., 2022). When compared
to open-field cultivation, protected cultivation techniques typically
have higher returns per unit area. Because of the non-static condi-
tions of the macroclimate, installed microclimate monitoring and
control equipment and crop production systems are complex and
dynamic (Azaza et al., 2015; Uyeh et al., 2021a). Greenhouse sys-
tems can be found all over the world in a variety of climatic con-
ditions. Therefore, to achieve favorable environmental conditions
for plant growth, these production systems must be designed in
such a way that the various components, shapes, glazing material,
shading materials, and indoor operations are based on prevalent
production systems site conditions. As a result of their importance
in food safety and security, these systems have recently received a
lot of attention (Fitz-Rodríguez et al., 2010; Hu et al., 2011; Su et
al., 2017; Escamilla-García et al., 2020; Uyeh et al., 2021a; Rabiu
et al., 2022). Because of the complexity of protected farming sys-
tems and variety of crops that can be grown in them, the general
rule is to focus on factors that are most important for plant growth
(Escamilla-García et al., 2020). 

A machine learning algorithm based on the concept of human
neurons is known as artificial neural network (ANN). ANNs are a
popular forecasting model that has been successful in forecasting
processes in many fields. ANNs are valuable and appealing for
forecasting tasks due to several distinguishing characteristics, such
as being data-driven, self-adaptive, having the potential to be gen-
eralized, and having the ability to learn the sample data and infer
correctly even with noisy data (Taki et al., 2016). Moreover, ANNs
can work as universal functional estimators. It has been demon-
strated that a network can approximate any continuous function to
any desired accuracy. In addition, ANNs are capable of solving
both linear and nonlinear problems (Khashei et al., 2010). Since
the development of effective neural network (NN) training tools to
successfully model microclimate and yield prediction, several
researchers have used NN to model nonlinear relationships gov-
erning the greenhouse environment (Zeng et al., 2012; Taki et al.,
2016; Owolabi et al., 2017; Singh et al., 2017; Hongkang et al.,
2018). Moon et al. (2018), for example, developed an ANN predic-
tion model to predict CO2 concentration using temperature, rela-
tive humidity (RH), atmospheric pressure, and solar radiation as
input. They established that ANN accurately estimated CO2 con-
centration in the greenhouse with an accuracy of 97%. NN models
have been demonstrated to be reliable, suitable for modeling
dynamic systems in real-time, and capable of solving nonlinear
system relationships that are difficult to solve using traditional
modeling techniques. However, none of the models took into
account vapor pressure deficit (VPD), another important climate
parameter, and the majority of these researchers used the feedfor-
ward NN with daily or hourly mean data, which was often very
short, ranging from 14 to 60 days. Furthermore, because the previ-
ously developed ANN models are specific to greenhouse types and
locations, they cannot be used for new greenhouses in new loca-
tions because the models lack explicit structural components and
other parameters in common. 

In response to the knowledge gap identified in the literature,
predictive models for indoor climate parameters were developed
for two single-span gothic greenhouses. Because greenhouse
microclimates are complex, multiparametric, and nonlinear, and
their climates are influenced by macroclimate conditions, planted
crops, structural members, accessories, and equipment, the dynam-
ic feedback time series nonlinear autoregressive external
(Exogenous) input (NARX) NN was used in this study. NARX

models are a type of nonlinear recurrent NN that can be used to
model dynamic systems with inputs and outputs that are time
series data. They are particularly useful for predicting time series
data when there is a nonlinear relationship between the inputs and
outputs, and when there are exogenous inputs (inputs that are not
part of the system being modeled). The Levenberg-Marquardt
(LM) backpropagation algorithm was used to train, validate, and
test the network using data collected from the two greenhouses
over six months because the algorithm gave the best model evalu-
ating parameter in terms of mean square error (MSE) and coeffi-
cient of determination (R2). The models were further evaluated
using root MSE (RMSE), mean absolute deviation (MAD), and
Nash-Sutcliffe efficiency coefficient (NSE). This research was car-
ried out using data collected from two single-span double-layer
greenhouses that had different thermal curtain positions (R green-
house (RGH) had its thermal curtain located directly at the roof
ridge, while the Q greenhouse (QGH) had its thermal screen at 5
degrees from the center of the roof ridge. This was done to deter-
mine the effect of the thermal curtain position on the microclimate
of the greenhouses.

Materials and Methods
Experimental setup and data acquisition

The experiments were performed in two greenhouses (RGH
and QGH) on the Smart Agricultural Innovation Centre’s green-
house farm at 35.89°N and 128.61°E coordinates in Daegu,
Republic of Korea. The greenhouses (oriented in the east-west)
had the same structural configurations (gothic roofed), polyethy-
lene glazing (thickness: 150 μm; transmittance: 91%), motorized
thermal screen [thermal conductivity (0.037 Wm-1K-1), thermal
radiation transmittance (<0.001%), reflectance (0.10), and emit-
tance (0.90)], roof and side vents, dimensions (22×8.4×4 m), and
four 0.5 hp air-circulating fans. The motorized roof and side vents
were activated at 21°C and 23 °C, respectively, while the boiler
activation and deactivation temperature range were 7.5-8.5°C as
8°C is the minimum temperature recommended for optimum
strawberry growth and development. The primary fuel source for
the boiler to generate heat was diesel fuel. The boilers’ heating
range was 15,000 kcal/h to 62,802 kcal/h, while the heating effi-
ciency and continuous hot water supply were both 90% each. The
same open-loop fertigation system was activated five times daily at
90-minutes intervals beginning at 0830 for a 3-minute fertigation
period. Solar radiation, RH, and air temperature were the environ-
mental parameters measured in both greenhouses, and these were
measured using standard sensing devices. The five-month experi-
ments were conducted from November 2021 to April 2022. Figures
1-3 show a greenhouse model, experimental greenhouses showing
thermal screen positions and sensor positions in both greenhouses. 

The Seolhyang strawberry cultivar was planted in 76 cm wide
and 1500 cm long greenhouse beds, with 30 cm spacing between
plants on each bed. Each greenhouse bed was divided into five
plots for a total of 25 plots. Standard strawberry cultivation prac-
tices are being implemented. Fruits were harvested from December
2021 to April 2022 and only marketable fruits (diameter >20 mm;
weight >5 g) were used for analysis. The air temperature and RH
sensors (temperature measurement range -20°C to 80°C, accuracy
of ±0.25°C; humidity measurement range of 0% to 100%, accura-
cy of ±2%, HOBO PRO v2 U23 Pro v2, ONSET, USA) were
installed (three per row) at 1.54 m from the floor and placed in pro-
tective plastic cases to shield them from direct solar radiation,
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Figure 1. Greenhouse model.

Figure 2. Thermal curtain positions. RGH, R greenhouse; QGH, Q greenhouse.

Figure 3. Sensor location in both greenhouses.
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which could lead to data inaccuracies. The solar radiation sensors
(HOBO RX3000, ONSET, USA, measurement range: 0 to 1280
W/m2; accuracy: ±10 W/m2 operating temperature range: -40°C to
70°C) were installed just above the crop canopy. All data loggers
recorded readings every ten minutes. The VPD was computed
using the following equations 1-4 (Abd-El Baky et al., 2004).

                                                                                                 

                                                              (1)

                                                                                                 

                           (2)

                               
(3)

                               
(4)

where:
A = -1.044×10 4; B = -1.129×10 1; C = -2.702×10-2

D = +1.289 × 10-5; E = -2.478 × 10-9; F = +6.545
T = air temperature in °C; RH = air relative humidity (%) of the
greenhouse; VPsat = air saturation vapor pressure (psi); VPair =
vapor pressure of the air (psi); VPD = vapor pressure deficit (kPa).

The yield data was prepared using the resampling technique.
Data resampling involves the upsampling or downsampling tech-
nique. The upsampling technique was, however, used in this study
to adjust the frequency of the yield data to match the climate data.
The upsampling techniques are shown in Equation 5.

                               
(5)

where x[n] is the original discrete time signal, L is the upsampling
factor, and y[n] is the upsampled signal. The length of the upsam-
pled signal is L times the length of the original signal.

The data was normalized in MATLAB using the minimum-
maximum normalization method to address the issue of differences
in units and orders of magnitude between the input and target vari-
ables, as shown in equation 6.

                          
(6)

x’ = normalized or standardized value/score; xi = raw individual
data; xmin = population minimum value; xmax = population maxi-
mum value.

Description of the network
A NN algorithm for the indoor climate of two gothic green-

houses was proposed. To begin, the R2 was used in the matrix lab-
oratory to select the best network training algorithm LM) Bayesian
regularization, and scaled conjugate gradient of the NARX dynam-
ic multi-layer perceptron ANN time series methodology (MAT-
LAB version R2021a, MathWorks, Inc, USA). To have a seamless
network architecture, and model the following was done:
1. Nine predictor inputs [indoor air temperature, RH, VPD,

indoor roof temperature (irT), indoor roof relative humidity
(irRH), solar radiation (SR), and outside temperature RH, and
SR].

2. Nine inputs for predicting indoor RH [indoor air temperature,
RH, VPD, irT, irRH, solar radiation, and outside temperature
RH, and SR].

3. Nine predictor inputs [indoor air temperature, RH, VPD, irT,
irRH, and solar radiation, and outside temperature, RH, and
SR].

4. The data was divided into three subsets: training, testing, and
validation and the target timesteps were 70%, 15%, and 15%.

5. The network architecture (Figure 1) was trained by varying the
number of input/feedback delays while keeping the number of
hidden neurons constant. The training process was iterated
until the model with the best validation matrices (R2, RMSE,
MAD MAPE), and NSE were obtained. To determine the ideal
number of neurons in the hidden layer, the rule of thumb that
states the number of hidden neurons should be between the
size of the input layer and the size of the output layer was used
in this work. Based on this rule of thumb, four hidden layers of
neurons were used to avoid overfitting or underfitting.

6. The best model selected from step (e) was chosen, and the pre-
dicted climate parameters were retrieved and analyzed.

Figures 4 and 5 show the NARX architecture and MATLAB
NARX NN diagram. The NARX is an architecture used in
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dynamic ANNs. The NARX architecture is designed to capture
the relationship between an input sequence (the exogenous
input) and an output sequence (the endogenous input) that may
have a time lag. The NARX model has a feedforward structure
that consists of a series of input layers, hidden layers, and out-
put layers.

Statistical analysis
The observed and predicted data were compared to see if they

differed significantly from each other. The null hypothesis
assumed that the observed and predicted data samples were identi-
cal, whereas the alternative hypothesis assumed that the data sets
were not identical. These hypotheses were tested using a confi-
dence level of 95% (p=0.05). 

The R2, which is a measure of the correlation between the
observed and predicted values, the MSE, the RMSE, the MAD,
and the NSE of the developed model were determined using equa-
tions 7-10. The RMSE can be used to calculate the degree of dis-
persion of a prediction against the measured, and the MAD can be
used to calculate the model’s tendency for overestimation or under-
estimation. Low values of MAD, MSE, and RMSE are desired for
good model accuracy. The NSE is used to describe the accuracy of
model output with observed data. An NSE value of 1 represents a
perfect match between observed data and outputs. As a result, the
closer the model efficiency is to unity, the more accurate the model
is (Adesanya et al., 2022).

                       
(7)

                       
(8)

                     
(9)

                   
(10)

βpredicted = predicted data; βactual = experimental data; βactual = mean
experimental data; nobs = number of observations;  m̅  = mean of
experimental data.

Results
The data collected from two greenhouses, referred to as RGH

and QGH, is presented in Supplementary Table 1. The statistics
indicate that the RGH had a higher average temperature and vapor
pressure deficit compared to the QGH. However, the QGH had a
higher relative humidity. Both greenhouses had similar mean solar
radiation values. The RGH had a mean temperature of
20.01±4.78°C and a mean VPD of 1.23±0.86 kPa, while the QGH
had a mean relative humidity of 52.36±2.06%. The mean SR for
the RGH and QGH were 254±150.67 Wm-2 and 205±127.64 Wm-

2 respectively. To predict, a NARX NN was utilized with indoor
temperature, relative humidity, vapor pressure deficit, solar radia-
tion, roof temperature, roof relative humidity, outside temperature,
and outside relative humidity as inputs. The network was trained,
validated, and tested using a ratio of 70:15:15, with 10 hidden neu-
rons and 2, 3, and 4 delays. 

The NARX NN was trained, validated, and tested using
indoor air temperature, RH and VPD as the target variables and
the indoor air temperature, RH, VPD, SR, irT, and irRH, and out-
door temperature, RH and SR as the inputs. The result of the pro-
cess is presented in Supplementary Tables 2, 3. In most cases, the
70:15:15 training, validation, and testing ratio with 10 hidden
neurons and 4 delays resulted in higher R-squared values and low
MSE, RMSE, and MAD. 

The analysis of variance (ANOVA) presented in
Supplementary Table 4 shows that the actual and predicted were
statistically insignificant at the 95% confidence level. The
ANOVA revealed that the actual and predicted values were not
significantly different at both the 95% and 99% confidence levels
(numerator degrees of freedom =1; denominator degrees of free-
dom =8110), which is desirable. There was no significant differ-
ence between the actual and predicted yield within the same
greenhouse whereas there was a significant difference between
the actual and predicted yield among the greenhouses with the
QGH having higher yield. The MAD and NSE were 0.01 and
1.00 in both greenhouses. This means that the NARX model used
to make predictions was able to accurately represent the actual
values, as the difference between the two was not statistically
significant. This implies that the model is reliable and can be
used for future predictions with a high level of confidence.
Figures 6, 7, and Supplementary Figure 1 show the trend of the
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Figure 5. MATLAB nonlinear autoregressive exogenous model neural network diagram.
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predicted parameters in RGH vs. QGH.
Supplementary Table 5 shows the predicted mean indoor air

temperature, RH, VPD, and yield for RGH and QGH. The predict-
ed mean of indoor air temperature, RH, VPD and yield for the
RGH is 20.1±4.64°C, 50.35±21.17%, 1.31±0.63 kPa and
6.33±1.58 g, respectively, while for the QGH it is 19.29±4.69°C,
52.33±20.56%, 1.21±0.76 kPa and 7.72±1.92 g, respectively. The
MAD for temperature, RH, VPD, and yield for RGH is 1.96°C,
8.58%, 0.28 kPa, and 0.01, respectively and for QGH it is 2.10°C,
7.58%, 0.24 kPa, and 0.01, respectively. The ANOVA performed
on the predicted VPD in the RGH and QGH at a 5% level of con-
fidence showed that there was a significant difference between the
VPD in both greenhouses. The MAD of all the predicted parame-
ters was less than the mean of each predicted indoor parameters
and yield. This result meets the requirement that a MAD value less

than or equal to the dataset means is desirable and considered a
good result. A low MAD indicates that the majority of the data val-
ues are close to the mean (since the expected distance from each
data value to the mean is small). A large MAD indicated that many
of the data values are far from the mean. The NSE, also known as
the sensitivity coefficient, was 0.68, 0.68, 0.78, and 1.00, and 0.65,
0.73, 0.82, and 1.00 for indoor air temperature, Rh, VPD, and
yield, respectively. These NSE values indicate that the accuracy of
modeled outputs concerning observed data depicts a perfect match,
as the closer the model efficiency is to unity, the more accurate the
model. Supplementary Table 6 depicts the frequency distribution
of VPD in the RGH and QGH. The QGH had higher percentages
of VPD within the optimal band than the RGH and lower VPD per-
centages outside the optimal band.
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Figure 6. Predicted temperature in R greenhouse and Q greenhouse. RGH, R greenhouse; QGH, Q greenhouse.

Figure 7. Predicted relative humidity in R greenhouse and Q greenhouse RH, relative humidity; RGH, R greenhouse; QGH, Q greenhouse.
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Discussion
The NARX models were evaluated to determine prediction

accuracy in terms of MSE, RMSE, MAD, and NS. Although
indoor air temperature, RH, and VPD were modeled in this study,
only the VPD was used later to evaluate the thermal environment
of the greenhouses and compare the NARX models because VPD
is the primary parameter that controls most of the plant metabolic
activities, such as transpiration and photosynthesis rates, evapora-
tion from plant leaves, and stomatal opening, which controls car-
bon dioxide assimilation, and nutrients and water uptake. In two
greenhouses adjacent to each other, the NARX NN was used to
train, validate, and test the network for indoor air temperature, RH,
and VPD. The NARX VPD model showed that the highest R2 in
the RGH was 99.1%, 98.7%, and 98.6% for the 70:15:15 network
architecture and 10:4 neuron-delays ratios. The corresponding val-
idation MSE and RMSE values of 1.04×10-4 and 1.02×10-4, and
MAD, and NS values were 0.28, and 0.78, respectively, in the
RGH. The NARX model for the QGH showed that the model was
good in terms of training R2, training MSE, RMSE, MAD, and NS
values of 98.9%, 8.66×10-4, and 2.94×10-4, 0.24, and 0.78, respec-
tively. These models have satisfied the conditions of MSE, RMSE,
and NSE, therefore, they are considered to be good based on these
model evaluating parameters. Seginer et al. (1994) predicted
greenhouse climate using a fitting NN model tool trained with
experimental data from two greenhouses in Avignon, France, and
Silsoe, United Kingdom, and obtained R2 values of 0.95 for
Avignon, and 0.97 for Silsoe. To characterize the indoor air tem-
perature of a naturally ventilated greenhouse in Western Europe
using outside air temperature and RH, global solar radiation
received, and the amount of cloud cover, Frausto et al. (2003) also
developed a linear autoregressive model with external input
(ARX) and autoregressive moving average models with external
input (ARMAX). They obtained R2 ranges of 0.85 to 0.99 for
ARMAX and 0.93 to 0.99 for ARX models. However, due to a lack
of adaptability to extended periods and the low accuracy of these
models compared to NARX. Frausto et al. (2004), on the other
hand, created an autoregressive moving average model with exter-
nal input (NNARX) model by combining linear autoregressive
models (ARX) with NN architectures and predicted internal green-
house temperature as a function of outside air temperature and
humidity, global solar radiation, and sky cloudiness with corre-
sponding goodness of fit of 75%, which is lower than the lowest
goodness of fit of 96.8% obtained using. This shows that NARX
has a higher predicting accuracy than other NN tools. Dariouchy et
al. (2009), on the other hand, obtained 0.987, 0.972, 0.991, and
0.989 for training temperature and humidity, respectively, while
using a NN fitting tool to predict internal temperature and humid-
ity while using a NN fitting tool to predict the internal temperature
and humidity in a greenhouse with external humidity, total radia-
tion, wind direction, wind speed, and temperature as inputs in a
seven days experiment. Similarly, Taki et al. (2016) predicted
inside roof temperature (Tri), indoor air humidity (RHis), soil tem-
perature (Tis), and soil humidity (RHia) of a semi-solar green-
house using roof temperature, inside air humidity, soil temperature,
inside radiation, and inside air temperature as inputs. Taki et al.
(2016) found 0.25°C, 0.30%, 1.06°C, and 0.25% for Tri, RHis, Tis,
and RHia, and concluded that ANN is a promising tool for predict-
ing indoor climate and is useful in fully automated greenhouses.
Petrakis et al. (2022) nonlinear designed to model the internal tem-
perature, RH, wind speed, and solar irradiance of a greenhouse
using the LM training algorithm with external temperature, RH,
wind speed, and solar irradiance as input variables, and internal

temperature, and RH as output/target variables. Petrakis et al.
(2022) reported an R2 of 99.9% for internal temperature and RH.
Even though Petrakis et al. (2022) obtained an R2 close to 100%,
the accuracy of the nonlinear input-output NN cannot be compared
to the nonlinear NARX used in this study. The use of NARX,
dynamic NN, and one of the NN time series applications has
demonstrated that it is the best-predicting tool. Indoor microcli-
mate revealed that the position of the thermal curtain had a signif-
icant influence on the VPD, which is considered the most impor-
tant indoor climate parameter.

Conclusions
Greenhouse microclimate modeling is important because the

microclimate is a dynamic system that is considerably influenced
by the macroclimate of the surroundings, thereby making its mod-
eling by conventional methods and techniques difficult. Therefore,
the advent of the dynamic ANN through the NARX modeling tool
in MATLAB has enabled the modeling of dynamics and complex
systems, such as the greenhouse microclimate, with high accuracy
and reliability as compared to the general ANN models. The
NARX modeling tool was able to reliably model the nonlinear and
dynamic greenhouse environment of two gothic greenhouses with
various thermal curtain positions, and the results obtained using
such these kind of models can aid in the design of control systems
based on the VPD, which is a climate parameter that more accu-
rately describes the environment than temperature and RH. Thus,
this study shows that using a dynamic NN model to simulate the
thermal environments of greenhouses with different thermal cur-
tain positions is effective. The comparison of the VPD in the RGH
and QGH showed that the RGH had 36.1% of its VPD readings
within the optimal range of 0.5-1.19 kPa, whereas the QGH had
46% of VPD data within the optimal range. 

There was also a significant difference (P<0.05) between the
VPD recorded in the two greenhouses with the QGH having better
VPD readings than the RGH. This model can be used to optimize
the thermal environment of greenhouses and improve the growth
and productivity of plants.

The dynamic ANN model was preferred over the general ANN
model because the dynamic ANN model is capable of nonlinear
modeling, can model the time-dependent relationship between
variables, high accuracy, enhanced predicting capabilities, and
good adaptation to change. Despite the advantages of using the
dynamic ANN models through NARX the following challenges
might be encountered in its implementation i) complex model
design is required; ii) a significant amount of data is required to
accurately capture the complex and nonlinear relationships
between the variables; iii) require high computational resources.
The potential use of dynamic ANN models can help to understand
the impact of reducing greenhouse gas emissions or increasing the
use of renewable energy sources and can also help in identifying
feedback loops that amplify the impact of climate change.
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Online supplementary material:
Figure S1. Predicted vapor pressure deficit in R greenhouse and Q greenhouse. RGH, R greenhouse; QGH, Q greenhouse; VDP, vapor pressure deficit.
Table S1. Descriptive statistics of microclimate parameters.
Table S2. Model architecture and accuracy parameter for R greenhouse.
Table S3. Model architecture and accuracy parameter for Q greenhouse.
Table S4. Analysis of variance of actual vs predicted data for R greenhouse and Q greenhouse.
Table S5. Mean of parameters.
Table S6. Frequency distribution of vapor pressure deficit in R greenhouse and Q greenhouse.
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