SUPPLEMENTARY MATERIAL

Research on inspection route of hanging environmental robot based on computational fluid

dynamics

Hui Yang,1* Yuhao Li,1* Chengguo Fu,1* Rongxian Zhang,2 Haibo Li,1 Yipeng Feng,1 Yaqi Zhang,1

Hongbin Cong,³ Fuquan Nie¹

¹School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology,

Xinxiang; ²School of Life Sciences, Henan Institute of Science and Technology, Xinxiang; ³Ministry

of Agriculture and Rural Affairs, Academy of Agricultural Planning and Engineering, Beijing, China

*These authors share first authorship.

Correspondence: Chengguo Fu, Henan Institute of Science and Technology, School of Mechanical

and Electrical Engineering, Xinxiang, 453003, China.

Tel.: +86.18238789201.

E-mail: scu fcg@163.com

Key words: CFD; environmental monitoring point; monitoring accuracy; piggery; track layout.

Contributions: HY, YL, and CF contributed equally. All the authors approved the final version to be

published.

Conflict of interest: the authors declare no potential conflict of interest.

Funding: this work was supported by Joint Funds of the National Natural Science Foundation of

China (Grant No. 52301205); Henan Province Science and Technology Research and Development

Projects (Grant No. 232102320333) and Project Name: Research on key technologies of high-

precision monitoring and multi-objective decoupling control systems for environmental inspection

robots (the project number has not been issued).

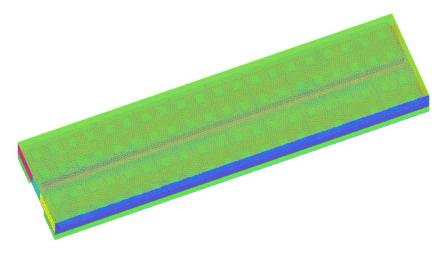


Figure S1. Model and grid display.

Table S1. Environmental data collection equipment.

Environmental parameter	Device name	Model	Measuring range	Measurement accuracy	Factory
Air temperature and humidity	Temperature-humidity transmitter.	VMS- WS	0~100%RH,- 313.15~+353.15K;	±3%RH,±273.65K.	VEMSEE
	Temperature- humidity detector	THM-01	0~100%RH,- 293.15~+333.15K;	±3%RH,±273.45K	DELIXI ELECTRIC
Wall temperature	Infrared thermometer	ST590C	-323.15~863.15K	±275.15K	SMART SENSOR
Building dimensions.	Laser rangefinder	DB50	0~50 m	±1.5 mm	DELIXI ELECTRIC
Wind speed	Anemometer	AS816	0.3~30 m·s ⁻¹	±5%	SMART SENSOR
	Air volume sensor	D6F- V03A1	0~3 m·s ⁻¹	±10%F.S.	OMRON
NH ₃	NH ₃ transmitter	VMS- NH3	0~70 mg⋅m ⁻³	±8%	VEMSEE

Note: all equipment has been calibrated before leaving the factory.

Table S2. Environmental parameter management standards for nursery piggeries.

Environmental parameter	Standard	
	Comfort range:	
Tomporatura (V)	293.15~298.15	
Temperature (K)	Critical value:	
	289.15~301.15	
Wind speed (m·s ⁻¹)	Winter: ≤0.2	
wind speed (iii's)	Summer: ≤0.6	
Humidity (0/ DH)	Comfort range: 60~70	
Humidity (% RH)	Critical value: 50~80	
NH ₃ (mg·m ⁻³)	≤20	

K, kelvin; RH, relative humidity.