SUPPLEMENTARY MATERIAL

Zanthoxylum infructescence detection based on adaptive density clustering

Diwei Wu,^{1,2} Shaohua Zeng,^{1,2} Shuai Wang,³ Yanan Chen,⁴ Yidan Xu⁵

¹College of Computer & Information Science, Chongqing Normal University; ²Chongqing Center of Engineering Technology Research on Digital Agricultural & Service; ³Chongqing Master Station of Agricultural Technology Promotion; ⁴Chongqing Wanzhou District Station of Soil Fertilizer and Agricultural Ecological Protection; ⁵Chongqing Beibei District Agriculture and Rural Committee, Chongqing, China

Correspondence: Shaohua Zeng, College of Computer & Information Science, Chongqing Normal University, Chongqing, 401331, China. E-mail: zsh_cqu@126.com

Key words: adaptive density clustering; infructescence detection; yield estimation; Zanthoxylum.

Acknowledgments: this research was supported by Chongqing University Innovation Research Group Funding [Grant No. CXQT20015] and Research Project of Chongqing Normal University [Grant No. YKC21060].

Conflict of interest: the authors declare no potential conflict of interest.

Availability of data and material: the raw data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

Input:	Fruit regions.
Output:	Result of density-based rough clustering.
1.	Calculate the density of each point according to Eq. 3, and get the density map <i>DM</i> ;
2.	Obtain feature weight map FW according to Eq. 7;
3.	Calculate the Hadamard product of DM and FW to get the feature density map FDM . The
	non-zero elements in <i>FDM</i> are extracted in the order of row-first to form $X = \{x_1, x_2,, x_n\}$
	x_N ;
4.	Find the maximum density points of FDM as the initial cluster centers;
5.	Assign labels to centers and form a series of cluster sets called <i>cluster_list</i> which only
	contains corresponding centers;
6.	Allocate unmarked points to the possible cluster sets according to Table 2;
7.	Merge clusters with duplicate elements into one cluster to update <i>cluster_list</i> by Table 3;
8.	Return <i>cluster_list</i> .

Table S1. Framework of the density-based rough clustering.

DM, density map; FW, feature weight; FDM, feature density map.

Input:	Points $X = \{x_1, x_2,, x_N\}$, cluster sets <i>cluster_list</i> .
Output:	The updated cluster set <i>cluster_list</i> .
1.	Initializing: <i>is_changed</i> =0
2.	while True do
3.	is_changed=0
4.	for <i>i</i> from 1 to $len(X)$ do
5.	if x _i not in any cluster_list then
6.	$ \qquad \qquad \mathbf{for} \operatorname{ each } x_j \operatorname{ in 4-neighbors } \operatorname{ of } x_i \operatorname{ do }$
7.	if x _j in cluster_list then
8.	$ $ $ $ $ $ $ $ $cluster_list[index of cluster set x_j]$
	belongs].append(x_i)
9.	<i>is_changed</i> = 1
10.	end if
11.	end for
12.	end if
13.	end for
14.	if <i>is_changed</i> == 0 then
15.	break
16.	end if
17.	end while

 Table S2. Points allocation (step 6 of Table 1).

Input:	Cluster set <i>cluster_list</i> .
Output:	Density-based rough clustering results.
1.	for <i>i</i> from 1 to <i>len(cluster_list)</i> -1 do
2.	for <i>j</i> from (<i>i</i> +1) to <i>len</i> (<i>cluster_list</i>) do
3.	if cluster_list [i]∩cluster_list [j] is not empty then
4.	$ $ cluster_list [i] = cluster_list [i] \cup cluster_list [j]
5.	cluster_list [j] = empty
6.	end if
7.	end for
8.	end for

 Table S3. Cluster sets merging (step 7 of Table 1).

Table S4. Local Calinski-Harabasz-based cluster merger.

Input:	Result of density-based rough clustering.
Output:	The optimal clusters.
1.	while True do
2.	for v _j in centers do
3.	$ \qquad v_i = \operatorname*{argmin}_{v} d(v_x, v_j), \text{ where } x \neq j$
4.	Calculate the <i>LCH</i> between v_i and v_j by Eq. 13
5.	end for
6.	Find the optimal merging with Eq. 15 and record the p and q
7.	Calculate the silhouette coefficient of the current merging, and remember it
8.	if number of clusters==2 then
9.	break
10.	end if
11.	end while
12.	Find the optimal merge result by Eq. 16 and return the corresponding merger.
LCH. 1	ocal Calinski-Harabasz.

LCH, local Calinski-Harabasz.

Input:	Zanthoxylum infructescence image img.
Output:	Number of infructescence and the location of infructescence.
1.	Extract the HOG feature map I_{HOG} from original image <i>img</i> .
2.	Obtain the thresholded HOG feature map I_{HOG} '.
3.	Extract the joint-direction-intensity feature map <i>I</i> .
4.	Calculate the ExGR index, and segment the plant and non-plant area to
	get PM.
5.	Fuse I and PM to obtain the fruit regions F' .
6.	Perform density-based rough clustering (Table 1).
7.	Iteratively merge the rough clustering results of Step 6, obtain the optimal
	clustering by Table 4.
8.	Mark the infructescence positions in the original image <i>img</i> and calculate
	the number of infructescence of infructescence based on the clustering
	results.

 Table S5. Framework of adaptive-density-clustering-based Zanthoxylum infructescence detection.

HOG, histogram of oriented; ExGR, excess green minus excess red.