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Abstract 

Recently, the existing unmanned systems of combine harvesters mostly adopts satellite navigation 

scheme, lacking real-time observation of harvesting adjustment. To improve the operational 

efficiency of combine harvester assisted navigation operation, this paper designs a combine harvester 

navigation control system based on vision simultaneous localization and mapping (SLAM)-inertial 

guidance fusion. The system acquires field image information and extracts the crop boundary line as 

the navigation datum by binocular camera. First, the system acquires field image information through 

binocular camera and extracts the crop boundary line as the navigation datum. Second, fusing camera 

and inertial guidance information to obtain the real-time relative position of a combine harvester. 

Third, constrained optimization of image and inertial guidance information is achieved through a 

sliding window optimization method based on tightly coupled nonlinear optimization. Finally, obtain 

the position of the combine harvester relative to the navigation datum line, and output a signal to the 

steering mechanism to realize the combine harvester in the field intelligent positioning navigation 

control. The system consists of binocular camera, inertial measurement unit, motorized steering wheel, 

monitor display, angle sensor and microcontroller. During field testing, the system underwent 

repetitive harvesting trials over a distance of 25 m.. The testing machine performs field operations at 

a speed of 0.9-1.5 m/s, with an average lateral deviation range of 2.21-8.62 cm, a standard deviation 

range of 0.13-4.21 cm and an average cutting rate range of 92.2%-96.0%, achieving the expected 

harvesting effect.  

 

Introduction 

Information technology has gradually been applied to agricultural production with the increasing 

level of agricultural mechanization in the world. The use of navigation technology to enhance 

operational efficiency is gaining more attention in the operation of agricultural machinery. During the 

operation process, the driver must constantly adjust the forward direction of the combine harvester to 

ensure the full cutting width. This is due to the complexity of the field environment. During prolonged 

operation, the driver's attention may be diverted by the need to observe the crop boundaries of the 

cutting platform, which can pose a safety hazard to agricultural production. Therefore, studying 

navigation technology to assist the driver in controlling the machine's motion is crucial (Luo et al, 

2016). 



Currently, agricultural machinery primarily uses satellite navigation, visual navigation and 

inertial navigation (Tan et al, 2020; Zhang et al, 2020). With the advancement of agricultural 

machinery intelligence, the use of machine vision in agriculture has gradually matured, replacing 

human perception of the environment to a certain extent, and has become a focus of research (Yang 

and Li, 2021). The research on vision-based passive navigation technology (Zhu et al, 2011) for 

agricultural machinery can accelerate the development of unmanned agricultural machinery. 

In recent years, numerous scholars worldwide have conducted extensive research on methods 

for positioning and navigation control of agricultural machinery. Robert et al (1996) from Stanford 

University, USA, were the first to equip a John Deere tractor with a GPS navigation system. The 

system had a straight-line tracking deviation of less than 2.5 cm; Cariou  et al (2003) developed a 

navigation control system for agricultural machinery that uses a Kalman filter and a nonlinear speed 

control system. The system relies on RTK_GPS as a source of navigation control information; In 

Japan, Nagasaka et al (2010) and Yoshisada et al (2004) added a fiber-optic gyroscope to detect the 

forward direction of the vehicle while using GPS for positioning. The rice transplanter operated at a 

speed of 0.7 m/s in a paddy field and had a maximum lateral deviation of 12 cm, which satisfies the 

requirements for rice planting; Noguchi et al (2001) developed an agricultural tractor control system 

that utilizes multi-sensor fusion technology. The system uses sensors such as machine vision, 

gyroscopes, and GPS to address the issue of low GPS positioning accuracy caused by ground 

interference. Experiments indicate that the tracking error for localization of the trajectory is less than 

5cm when moving forward at a speed of 2.2m/s; Ma et al (2019) built a low-cost navigation system 

based on machine vision and inertial sensors on a microcomputer, and estimated the navigation 

information by the extended Kalman algorithm, with a maximum error of ≤10 cm and a heading angle 

error of ≤1° during travelling; Zhang et al (2020) proposed a path detection algorithm for visually 

navigating jujube rows for date harvesting machines. The algorithm achieved an average path 

detection accuracy of 94%; The study above indicates that the machine's positioning primarily 

depends on satellite navigation, such as GPS and BeiDou. However, this method cannot determine 

the machine's relative position, and high-precision satellite navigation at the civilian level is 

expensive. 

This study presents a combined harvester navigation control system that is based on vision 

SLAM-inertial guidance fusion. The system is designed to account for the motion characteristics of 



wheeled combine harvesters and the accuracy of field positioning. The system integrates two types 

of sensor data from a binocular camera and an inertial measurement unit (IMU) (Li et al, 2016; Lu et 

al, 2016; Ma et al, 2020; Xu et al, 2021) to achieve sensor complementarity and obtain accurate and 

reliable real-time relative position information of the combine harvester. The steering mechanism of 

the combine harvester is adjusted based on the field data acquired, enabling auxiliary control and 

improving harvesting efficiency while reducing costs. 

 

Materials and Methods 

Scheme design of navigation control system of combined harvester 

Navigation system hardware design composition 

Due to the complex operating environment of the combine harvester, the navigation system must 

achieve position detection and boundary recognition of the body based on the harvester's different 

motion postures and the irregularity of the crop boundary. Process visibility, data storage, and 

read/write functions are necessary. 

This paper presents the design of a navigation control system for a combine harvester using 

vision SLAM-inertial fusion, in accordance with the specified requirements. Figure 1 displays the 

system's hardware components. The system primarily comprises a binocular camera, an inertial 

sensor IMU, a rear wheel angle sensor, and a power control steering wheel. Binocular cameras, 

inertial sensors, and angle sensors are used for environmental awareness. The collected data is 

analyzed and processed by the system, which then transmits a control signal to the steering 

mechanism. The combine harvester's closed-loop steering control is achieved by using the actual 

steering angle of the rear wheels, which is fed back by the angle sensor. 

 

Navigation algorithm framework design 

Visual SLAM algorithms are mainly used for real-time positioning and map construction. The 

binocular inertial SLAM algorithm (Zhang et al, 2017) constructed in this paper has the following 

components:  

(1) Front-end visual odometry. It mainly contains the extraction of the navigation boundary line 

of the combine harvester, the motion position estimation of binocular images, the 

preprocessing of IMU data and the visual inertial guidance data alignment. 



(2) Back-end state estimation. It mainly contains reprojection error constraints for binocular 

vision, IMU pre-integration constraints, and optimal estimation of the combine harvester's 

position using nonlinear optimization and sliding-window construction of a least squares 

problem. 

Figure 2 shows the algorithm's architectural flow. Firstly, the combined harvester's perception 

of the environment was acquired using a binocular camera and inertial IMU (Cheng et al, 2017). 

Secondly, Determine the position of the fuselage following sensor alignment and initialization. To 

select key frames, assuming that the number of feature points of the two images acquired by the left 

and right eyes of the binocular camera in the current frame is N, the number of road marking points 

in the point set of the local map is S, and the number of feature points in the current frame that have 

been successfully matched with the point set is T. Based on the motion conditions of the field 

operation, we make judgments on the ratios of T/N and T/S to complete the selection of key frames. 

Thirdly, Add filtered keyframes to the sliding window for optimization. The sliding window is used 

to maintain and optimize the information from the camera and inertial guidance due to the large 

deviation of acquired images and errors in position estimation. This ensures accurate airframe position 

information. Finaly, the steering angle information can be obtained by calculating the deviation 

between the navigation boundary line acquired by the binocular camera and the motion state 

prediction of the combine harvester. This allows for precise steering control of the combine harvester. 

 

Dual front-end visual odometer 

Binocular pose estimation and navigation boundary line extraction 

The front-end of the SLAM algorithm obtains relative motion increments from image sequences 

captured by the binocular camera and extracts the positions of feature points in the world coordinate 

system 𝑤 . The process can be divided into four main stages: feature detection and matching, 

correction and outlier rejection, kinematic position estimation, and triangulation measurement 

(Scaramuzza et al, 2011). 

Figure 3 shows a schematic representation of the working principle of the binocular stereo vision 

front-end. First, extract the feature points and compute their descriptors to obtain the ensemble 𝐶! of 

the roadmap points in space. The ensemble of projections of the feature points at the 𝑘-th moment is 

represented by %𝐶"#! , 𝐶"$!&!%&'. The feature points are corrected using the OpenCV correction function. 



This function performs binocular feature matching based on the similarity of the feature descriptors. 

The rejection of the dissimilarity point is then carried out; Second, The ISP method can be used to 

compute ∆𝑇"&%,"  and ∆𝑇",")% , which represent the incremental change in pose of two adjacent 

image sequences. This provides an estimation of the kinematic pose represented by the camera 

coordinate system; The camera's external reference matrices, 𝑇" , 𝑇")%  and 𝑇"&% , represent the 

transformation of the world coordinate system 𝑤 to the camera coordinate system. The waypoint's 

position in 𝑤 can be obtained. 

The navigation datum is the crucial foundation for the combine harvester navigation system's 

forward direction. Its basic principle is to extract the edge of the field crop to be harvested from the 

image as the navigation datum. The feature points and navigation reference line of the field are 

extracted using a binocular camera during the front-end visual odometer's pose calculation. 

Homomorphic filtering (Liang et al, 2010) is applied to the acquired images. Homomorphic filtering 

is a technique used in frequency domain processing to address the issue of non-uniform illumination 

in field images. The fundamental principle is to process the image through image frequency filtering 

and grayscale transformation. Various methods have been proposed to address the issue of uneven 

image illumination, including the gray-scale transformation method (such as the histogram 

equalization method), the illumination-reflection based homomorphic filtering method, the Retinex 

enhancement method, and the gradient-domain image enhancement method, etc (Liang et al, 2010). 

The illumination-reflection model views an image 𝑓(𝑥, 𝑦) as the product of the incident component 

𝑖(𝑥, 𝑦) and the reflected component 𝑟(𝑥, 𝑦), as shown in Eq. 1. 

𝑓(𝑥, 𝑦) = 𝑖(𝑥, 𝑦) ∙ 𝑟(𝑥, 𝑦) (1) 

The grayscale of the image is determined by the incidence and reflection functions. The 

incidence indicates the light conditions, which change slowly and are part of the low-frequency 

information barrenness. The reflection component represents the detailed part of the image, which 

changes rapidly and belongs to the high-frequency, information-rich portion of the image. During 

image pre-processing, the goal is typically to reduce low frequencies and increase high frequencies 

in order to preserve image details and improve overall quality. 

Eq. 2 is obtained by performing a logarithmic operation on the original image 𝑓(𝑥, 𝑦) before 

performing homomorphic filtering. 

𝑙𝑛𝑓(𝑥, 𝑦) = 𝑙𝑛𝑖(𝑥, 𝑦) + 𝑙𝑛𝑟(𝑥, 𝑦) (2) 



Eq. 3 is obtained by performing the Fourier transform. 

𝐹(𝑢, , 𝑣) = 𝐼(𝑢, 𝑣) + 𝑅(𝑢, 𝑣) (3) 

The incident and reflected components can be separated for subsequent filtering. After 

multiplying the homomorphic filtered transfer function 𝐻(𝑢, 𝑣) on both sides of Eq. 2, the Fourier 

inverse transform yields the spatial domain. 

h*	(x, y) = h+	(x, y) + h,	(x, y) (4) 

Finally, the Eq. 3 is de-exponentiated to obtain the final image output 𝑔(𝑥, 𝑦). 

𝑔(𝑥, 𝑦) = 𝑒-!	(0,1) = 𝑒-"	(0,1) ∙ 𝑒-#	(0,1) (5) 

Pixel values near the edge of the crop are retained by removing some high-frequency noise 

through grayscaling and bilateral filtering after performing image illumination homogenization. Then, 

binary thresholding and morphological opening operations are applied to facilitate edge detection. 

Finally, after being processed by the Canny edge detection operator, the resulting image is subjected 

to the cumulative probability Hough transform. When calculating the direction and length of a line 

segment, only certain points in the plane are taken into account to reduce calculation time. Random 

sampling was used to select the points for straight line fitting. The procedure will terminate once the 

number of fits reaches the predetermined threshold. Figure 4 illustrates the result of the navigation 

boundary line detection procedure. 

 

Inertial measurement unit inertial measurement unit pre-integral 

The IMU (inertial measurement unit) includes three uniaxial accelerometers and three uniaxial 

gyroscopes that measure the angular velocity and acceleration of an object in three-dimensional space 

and use them to solve for the object's attitude. However, the output frequency is high and errors 

accumulate over time (Zhou et al, 2021; Liu et al, 2016). When processing IMU data, the frequency 

of inertial navigation measurements is several times higher than that of image acquisition, resulting 

in a high calculation cost. To reduce the amount of calculation, the IMU measurement model is pre-

integrated ( Lupton and Sukkarieh, 2011), and the IMU and camera data are aligned. Figure 5 shows 

the pre-integration schematic. Eq. 6 represents the pre-integration formula. Integrating all inertial 

measurement unit (IMU) data between frame k and frame 𝑘 + 1 provides the initial values for the 

position 𝑝, velocity 𝑣, and rotation 𝑞 of frame 𝑘 + 1 for visual estimation. The time interval is 

represented by ∆𝑡, while 𝑎 and 𝜔 represent the acceleration and angular velocity, respectively. 



The calculation of the inertial guidance increment in the interval [𝑘, 𝑘 + 1] is the pre-integration of 

the IMU. The IMU state at moment 𝑘 is known to have been obtained. 

⎩
⎪
⎨

⎪
⎧𝑝")% = 𝑝" + 𝑣"∆𝑡 +

1
2
𝑎∆𝑡
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Visual-inertial data fusion based on sliding window 

The system acquires road marking points and inertial IMU data for positioning and navigation. 

The camera acquires key frames with timeliness due to the special characteristics of field operation. 

As a result, during combine harvester operation, crop feature points in the unharvested area disappear 

after harvesting. Additionally, during turning operations, when the environment changes significantly, 

feature points are easily lost. To address these issues, a sliding window based on the key frames is 

used to control the parameter optimization of the control system state variables (Qin et al, 2018) and 

to carry out the optimal estimation of the overall motion state of the combine harvester. 

Before the final position optimization, it is necessary to initialize the sensor information. The 

bias and scale factors of the inertial sensors are estimated primarily through the rotation and 

translation matrices of the camera. 

To construct a visual-inertial guidance system with accurate positioning and local consistency, 

we construct IMU residuals, marginalized residuals, and key-frame visual error terms in a sliding 

window to optimize the state variables during combine harvester operation. Eq. 7 below shows all 

the state variables in the window, which include all the camera states. 

𝑋 = V𝑥3, 𝑥%,⋯𝑥5, 𝑥67 , 𝜆3, 𝜆%, ⋯ 𝜆8Y (7) 

𝑥" = V𝑝7$
9 , 𝑣7$

9 , 𝑞7$
9 , 𝑏: , 𝑏;Y (8) 

𝑥67 = [𝑝67 , 𝑞67] (9) 

 The 𝑥" 	includes the current position, velocity, orientation, accelerometer bias, and gyroscope 

bias as represented by the IMUs. The parameter 𝑥67  refers to the outer parameter of the camera 

system in relation to the IMU body system. The rotation and rotation matrices in 𝑥67are represented 

by 𝑝67 and 𝑞67 respectively. 𝜆8 represents the inverse depth of one of the 3D points. 



Set the window's fixed keyframe to 𝑁 = 10. After harvesting, the feature points of the original 

image have irreversibly disappeared. When new keyframes are added to the window, the oldest ones 

are deleted. The old keyframes pass on the camera and inertial guidance information to the remaining 

variables through marginal probabilities. Then, an objective function is constructed, and nonlinear 

least squares optimization is performed. Eq. 10 represents the least squares optimization equation. 

min
<
c∥ 𝑟= − 𝐽=𝑋 ∥>+ 𝛿h ∥ 𝑟? i�̂�7$%&

7$ , 𝑋l ∥∑7$7$%&
> +

"∈?

𝜏n𝜌(∥ 𝑟6(�̂�B
6' , 𝑋) ∥

∑(
)'

> )

(B,C)∈D

p (10) 

The prior information ∥ 𝑟= − 𝐽=𝑋 ∥> is obtained from the marginalized keyframes. The IMU 

residual is represented by h ∥ 𝑟?(�̂�7$%&
7$ , 𝑋) ∥∑7$7$%&

>

"∈?
, while the visual residual is represented by 

n 𝜌(∥ 𝑟6(�̂�B
6' , 𝑋) ∥

∑(
)'

> )
(B,C)∈D

. The parameters 𝛿 and 𝜏 are used for adaptive adjustment. 

When steering operations are detected, the camera information and inertial guidance information 

are adjusted for weighting due to the irreversible disappearance of image feature points. When 

removing the position and feature points of the old keyframes to calculate marginalized residuals, 

only the IMU constraint relations associated with them are retained. These are then transformed into 

a priori information of the system optimization. Non-linear optimization is then performed. 

Ultimately, the combine harvester's current bit position is output. 

 

Steering controller design 

To address the issue of front and rear wheel spacing and steering radius, we establish a motion 

model for a wheeled combine harvester, disregarding external factors such as wheel slip between 

tyres and the ground. The coordinate system 𝑂9 − 𝑥9 − 𝑦9  is established with the right limit 

position of the cutting table, as shown in Figure 6. During harvesting operations, the combine 

harvester maintains a constant forward speed and faces the 𝑦9  direction. The parameters for 

threshing, cleaning, paddle wheel, and cutting table height are set beforehand. The actual cutting 

width is determined by subtracting the distance (ℎ) from the crop boundary to the rightmost side of 

the cutting table from the actual maximum cutting width (𝐹) of the cutting table. During operation of 

the auxiliary navigation control system, steering is adjusted to achieve full-width harvesting based on 



the lateral deviation (ℎ) between the current crop boundary line and the predicted direction of the 

fuselage movement. Eq. 11 represents the crop boundary line, which serves as the navigation datum. 

𝛼𝑥 + 𝛽𝑦 + 𝛾 = 0 (11) 

When performing steering control, it is also important to monitor the heading angle. The speed 

can be calculated using the translation matrix between neighboring frames. The heading deviation 

angle (φ) can be calculated using the crop boundary line and the heading direction of the combine 

harvester. When performing harvesting as shown in Figure 6, ∆φ can be expressed as Eq. 12. 

∆𝜑 = arg tan {
𝛼
𝛽| +

𝜋
2

(12) 

By using the distance 𝐿 from the rear wheel axle to the cutting table and the forward speed, it 

is possible to calculate the radius of movement 𝑅 of the cutting table during steering, as well as the 

change in lateral deviation. Eq. 13 shows the calculation of the cut-amplitude G-transform based on 

the corresponding data. 

c

𝐺 = 𝐹 − ℎ

𝑅 =
𝐿

tan 𝜃
ℎ = 𝑅(1 − cos ∆𝜑)

(13) 

𝐿, distance from rear wheel axle to cutting table, 𝑚; 𝑅, turning radius, 𝑚; 𝐹, actual maximum 

cutting width, 𝑚𝑚 ; ℎ , lateral deviation, 𝑐𝑚 ; 𝜃 ,Rear Wheel Turning Angle, degrees (°); 𝜑 , 

Heading Deviation Angle, degrees (°); 

To meet the requirements of the navigation control system, we selected a single neuron PID 

control algorithm for the steering control algorithm of the combine harvester. This algorithm aims to 

regulate the direction faster and more accurately. Figure 7 shows the block diagram of the control 

strategy. The control signal is output by the navigation control system based on the angle of the rear 

wheel steering input. The steering information is outputted to the steering wheel by the system. The 

motor is controlled by the steering wheel to adjust the rear wheel steering based on the signal. The 

combine harvester's steering control is achieved by using feedback from the rear wheel angle sensor. 

This ensures that the cutting deck's edge fits the crop boundary line for efficient harvesting and 

navigation control. 

 

Results and Discussion 

Field tests 



Test data and operating environment 

Field tests were conducted at Jiangsu Nianfeng Farm in Zhenjiang Danyang, Jiangsu Province, 

China to verify the operating effect of the combine harvester navigation control system designed in 

this paper. A navigation control system based on vision SLAM-inertial fusion was integrated into a 

Ward 4LZ-8F wheeled combine harvester. The harvester has a camera height of 3100 mm, a cutting 

deck width of 2600 mm, and a front/rear wheel spacing of 285 cm, as shown in Figure 8. 

The accuracy and robustness of the entire system depend heavily on the vision sensor, which 

serves as the primary source of information acquisition. This paper uses MYNTEYE-S1030-IR 

standard version, the data output format is Raw, and the resolution is 752×480. The manufacturer of 

the products is MYNTAI, located in Beijing, China; The inertial measurement unit serves as an 

auxiliary camera to capture instantaneous motion states. It requires high sampling frequency and 

accuracy. This paper uses the WIT HWT901B inertial guide produced by WIT Intelligent Company 

in Shenzhen, China, which has a lower cost, and is able to record the motion status of the combine 

harvester in real time; The NVIDIA TX2 development board, manufactured by NVIDIA Corporation, 

headquartered in Santa Clara, California, USA, was selected for development. It has strong AI 

computing capabilities, 256 CUDA cores to accelerate graphics processing, and a multi-core CPU 

that is more suitable for multi-threaded operations throughout the program. The GTCV13609 is a 

contact shaft type angle sensor with a resolution accuracy of 0.022°. 

 

Steering control test 

Simulation of the controller is necessary when conducting field tests. First, conventional PID 

(Proportion Integration Differentiation) parameter tuning was performed. Then, the algorithm was 

validated in the Simulink environment by simulating a fixed lateral deviation input of 20 cm. It was 

discovered through continuous test parameters that the steering effect was superior when 	𝐾= =

0.215,	𝐾! = 9.236, and 𝐾E = 0.071; The tuning of parameters for the single neuron PID (Ding et al, 

2020) primarily involves adjusting the learning rate and gain coefficient. By setting up the update 

state variables and adjusting the input and learning rate tuning parameters, we can obtain the final 

gain coefficient 𝐾	 = 	3.1, as well as the learning rates 𝜇= 	= 	16.2, 𝜇E 	= 	10.4, and 𝜇! 	= 	23.3. 

Figure 9 displays the simulation data. To simulate sudden field conditions, increase the perturbation 



at 6 seconds. Analysis shows that the single neuron PID control is superior and the designed system 

meets the auxiliary navigation control requirements of the combine harvester. 

 

Fieldwork tests 

To verify the combine harvester navigation control system's operating effect, we selected a 

conventional rice field for the accuracy test of the navigation system. We measured and analyzed the 

cutting width. Assessing the navigational quality of a combine harvester through lateral deviation and 

average cutting rate. 

This is an example of path tracking for a straight-line harvesting operation of a combine 

harvester at an operating speed of 1.2𝑚/𝑠. Figure 10 shows the effect of the trajectory of 25m 

straight line harvesting. GT in the illustration shows the crop edge of the test field's data localization 

using a high-precision handheld GPS as a comparison to the combine harvester's operating trajectory; 

The illustration shows that the system detects the driving trajectory. This track is recorded by the 

combine harvester's auxiliary navigation system. This is a coordinate transformation to derive the 

right limit trajectory of the cutting table, using the center axis trajectory as the reference; The 

illustration shows that GPS detects the driving track. It represents the trajectory left by the GPS as it 

moves with the combine harvester operation; The graph's origin represents the initial position of the 

machine, with the Y-axis indicating forward distance and the X-axis indicating lateral movement. 

Figure 11 shows the difference in coordinates between the actual movement trajectory and the crop 

boundary line. This represents the lateral deviation of the combine harvester. Eq. 14 is used to 

calculate the lateral deviation. 

∆𝑙 = |𝑙F − 𝑙G| (14) 

In Eq. 14, ∆𝑙  represents the lateral deviation, 𝑙F  represents the system's detected traveling 

trajectory, and 𝑙G represents the crop edge. 

The perimeter of the field should be trimmed to enable the harvester to make turns during 

wheeled combine operations. Based on the data presented in Figure 10, the mean lateral deviation 

was calculated to be 5.89 cm, with a standard deviation of 0.04 cm. The system is more robust, and 

the combine harvester can operate more effectively along the boundary line under the navigation 

control system. Figure 12 displays the cutting width variation curve. The average cutting width is 

239.6cm with a standard deviation of 2.3cm, resulting in an average cutting width rate of 95.8%. The 



nominal cutting width of the combine harvester is 260cm, while the maximum cutting width during 

actual operation is 250cm. This satisfies the system design requirements. 

To compare the effect of navigation control accuracy under different operating states and speeds, 

we conducted repeated tests at 0.9m/s and 1.5m/s. The combine harvester navigation operation test 

included straight lines and irregular curves. The specific test results are shown in Table 1. 

The comparative test data from the three groups show that when the combine harvester operates 

at low speed 0.9𝑚/𝑠 and medium speed 1.2𝑚/𝑠, the average cutting rate is similar. However, at 

high speed 1.5𝑚/𝑠, the average cutting rate decreases significantly. Therefore, to ensure higher 

harvesting efficiency, the combine harvester should maintain a speed of about 1.2𝑚/𝑠. 

 

Conclusions 

This paper presents a navigation control system designed for the specific characteristics of 

combine harvester field operation, based on binocular SLAM-inertial fusion. The binocular camera 

is used to obtain real-scale information and motion position. Inertial guidance can assist the camera 

in obtaining more accurate scale information, speed, position transformation, and other data. The 

combination of the two sets of data can be optimized to determine the relative position of the combine 

harvester in the field. The designed steering controller can accurately adjust the motion attitude of the 

combine harvester so that the combine harvester can maintain a high cutting width and harvesting 

efficiency. 

The test results indicate that, under the condition of no leakage, the navigation control system 

integrated test prototype developed in this paper can effectively ensure that the cutting width rate 

meets the actual operational requirements when the combine harvester operates at a speed of 

0.9~1.5m/s. The average cutting width rate ranges from 92.2% to 96.0%, the average transverse 

deviation ranges from 2.21 to 8.62cm, and the standard deviation ranges from 0.13cm to 4.21cm. The 

system can more accurately measure the positional transformation of the harvester and compensate 

for any deviation in the forward path or crop harvesting boundary. This allows for adjustment of the 

steering mechanism to achieve full-width operation requirements and meet the efficiency standards 

of the combine harvester's passive automatic navigation harvesting. 
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Figure 1. Block diagram of hardware components. 
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Figure 2. SLAM algorithm system block diagram. 
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Figure 3. The schematic diagram of binocular VO front-end. 
 
 

 
Figure 4. Rendering of navigation boundary line detection program. 
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Figure 5. Schematic diagram of pre-integration. 
 
 
 

 
Figure 6. Motion model of wheeled combine harvester. 
 
 
 

 
Figure 7. Assisted navigation control strategy diagram. 
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Figure 8. Test platform. 
 
 
 

 
Figure 9. Steering control simulation adjustment diagram. 
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Figure 10. Comparison chart of job trajectories. 
 
 
 

 
Figure 11. Horizontal deviation diagram. 
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Figure 12. Actual cutting measurement data of linear operation. 
 
 
Table 1. The results of field navigation experiments. 
Operating 
speed 
(m/s) 

Operating 
environment 

Mean lateral 
deviation 
(cm) 

Lateral deviation 
standard deviation 
(cm) 

Actual cut 
width (cm) 

Average cut 
rate (%) 

0.9 
Line work 2.21 0.13 240.1 96.0 
Irregular 
curve 

4.31 1.92 239.8 95.9 

1.2 
Line work 5.89 0.24 239.6 95.8 
Irregular 
curve 

3.34 2.18 237.4 94.9 

1.5 
Line work 7.33 1.64 232.5 93.0 
Irregular 
curve 

8.62 4.21 230.6 92.2 
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