
Abstract
Early detection of bruising is one of the major challenges in

postharvest quality sorting processes for pears. In this study, visi-
ble/near infrared (VIS/NIR) hyperspectral imaging (400–1000
nm) was utilized for early detection of pear bruise type and timing
(1, 12, and 24 h post-bruise). Spectral images of nonbruised and
mechanically bruised pears (collision and compression) were cap-
tured at these intervals for modeling. Spectral data were processed
using principal component analysis (PCA) and uninformative
variable elimination (UVE) to select optimum wavelengths.
Classification models were then built using an extreme learning
machine (ELM) and support vector machine (SVM), and com-

pared with a model combining genetic algorithm, sooty tern opti-
mization algorithm, and SVM (STOA-GA-SVM). For PCA-ELM,
UVE-ELM, PCA-SVM, and UVE-SVM models, the calibration
set accuracies were 98.99%, 98.98%, 96.94%, and 99.23% respec-
tively. And the validation set accuracies were 89.29%, 87.97%,
88.78%, and 88.78% respectively. The STOA-GA-SVM model
shows the best performance, and the accuracy of the calibration
set and validation set is determined to be 97.19% and 92.86%,
respectively. This study shows that the use of the VIS/NIR hyper-
spectral imaging technique combined with the STOA-GA-SVM
algorithm is feasible for the rapid and nondestructive identifica-
tion of the bruise type and time for pears.

Introduction
Pear (Pyrus spp.) is a favorite fruit of consumers due to its rich

vitamins and minerals with high nutritional value. However, pears
are easily bruised by various activities during harvesting, trans-
portation, grading, and sorting, such as collision and compression
(Arango et al., 2021; Stropek and Gołacki, 2015). Bruising not
only injures the tissue structure of the pear, leading to loss of nutri-
tional value and increased risk of microbial infestation, but also
degrades the appearance quality of pears, causing significant eco-
nomic losses (Li et al., 2016; Opara and Pathare, 2014). Hence,
detecting and distinguishing the type and timing of pear bruising
is crucial as it provides a reference for quickly identifying the pro-
cess causing the bruise and taking prompt measures to reduce eco-
nomic losses. Furthermore, insights into the specific types and
timings of the bruises can guide the design enhancements and
optimization of equipment used in the harvest, grading, packag-
ing, storage, and transportation of fruits and vegetables (D. Y. Liu
et al., 2024). Consequently, accurately identifying the type and
timing of pear bruises plays a crucial role. It holds significant
importance for the pear industry (Opara and Pathare, 2014; Yuan
et al., 2021).

Near-infrared spectroscopy (NIRS), as an advanced technique,
has been successfully applied to the nondestructive detection of
the internal quality of various fruits and vegetables (Nicolaï et al.,
2014), such as persimmons (Hasnah Ar et al., 2019), kiwifruits
(Liu et al., 2017), and peaches (Guo et al., 2016). However, NIR
spectra are usually obtained at a single point for a sample.
Hyperspectral imaging technology has emerged as a relatively
rapid and accurate detection technique for horticultural products
over the past decade (Zhang et al., 2014) because it can be used to
provide more detailed and complete information, including inter-
nal structure characteristics, morphological information, and
chemical composition for a sample (Rahman et al., 2017).
Recently, hyperspectral imaging technology has been widely used
for the detection of bruising in fruits, such as apple (Huang et al.,
2015; Xing and De Baerdemaeker, 2005), peach (Li et al., 2022b;
Li et al., 2018; Li et al., 2021), blueberry (Fan et al., 2017),
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kiwifruit (Gao et al., 2021), jujube (Thien Pham and Liou, 2022;
Yuan et al., 2021), etc. Recently, hyperspectral imaging systems
have been widely used to detect early bruises on pears. However,
most current studies focus only on identifying early bruises (Fang
et al., 2019; Jiang et al., 2016; Lee et al., 2014; Li et al., 2024),
with fewer investigations simultaneously addressing multiple fac-
tors such as bruising type, and timing (Fu and Wang, 2022; Liu et
al., 2023; Liu et al., 2024; Su et al., 2022). Despite some advance-
ments, these studies still have limitations. Currently, there are two
primary methods for detecting pear bruises using hyperspectral
imaging. The first method involves stepwise feature spectral
extraction followed by target identification model building, which
still relies on manual expertise to determine whether the selected
features and classification models perform well. The second
approach employs deep learning for an end-to-end methodology
that autonomously extracts features from hyperspectral images to
detect fruit damage. While this method shows promise, it requires
extensive datasets and robust hardware. Consequently, this paper
proposes a novel approach combining the genetic algorithm (GA)
and the sooty tern optimization algorithm (STOA) to optimize both
the support vector machine (SVM) hyperparameters and feature
selection simultaneously. This improved STOA-GA-SVM method
enables the automatic discovery of abstract features in the spec-
trum and obtains optimal feature classification results. The feasi-
bility of the proposed STOA-GA-SVM model will be analyzed in
detecting pear bruises and the associated bruise timing. 

Materials and Methods
In this section, the details for each part of the experimental pro-

cess are presented, including sample preparation, experimental
setup, spectral data acquisition, data preprocessing, feature selec-

tion, model building and model evaluation, and the overall flow is
shown in Figure 1.

Sample preparation
All pears (variety ‘Crystal’) in this study were purchased from

the local market in Harbin, Heilongjiang, China. A total of 210 pears
without any visual defects (such as scars, cuts, shrivel, etc.) were
selected, washed and numbered individually. To keep the samples at
approximately the same temperature as room temperature, they were
stored in an environment with a temperature of 22°C and relative
humidity of 60% for 24 h. The samples were randomly divided into
three batches, each containing 70 pears. One batch was used for
preparing collision bruised samples, a second batch was used for
obtaining compression bruised samples, and a third batch without
any treatment was used as a control and named nonbruised samples.
In preparing the samples with compression bruises, the samples
were placed on the platform of a computer-controlled universal test-
ing machine (WDW-100, Changchun Kexin Test Equipment Co
Ltd., Changchun, China). The movement speed of the lower indenter
of the universal testing machine was set to 10 mm/min. When the
deformation of each pear sample reached 5 mm, the movement of
the indenter was stopped and held for 20 s, and then the sample was
taken out. Collision bruise samples were prepared by using steel
balls with a weight of 225 g placed on a slope inclined at 20°. The
balls were rolled down the slope from a height of 10 cm above the
ground to hit the equatorial zone of the pear, with one impact made
on each sample. Figure 2 shows selected images of pear samples.
There is no significant difference in appearance between pear sam-
ples immediately post-bruising and the nonbruised samples. Three
days post-compression bruising, it remains challenging to observe
the bruise even after peeling off the skin. In comparison, three days
post-collision bruising, the bruised areas become slightly brown and
visible once the skin is removed.
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Figure 1. Processing methods for spectral data.



Acquisition of hyperspectral images and spectral
extraction

Figure 3 shows the structural information for the hyperspectral
acquisition system. This system mainly consists of the following
components: a charged couple device (CCD) camera, an imaging
spectrograph (FX10E, SPECIM Ltd., Oulu, Finland) that covers
the spectral range of 400-1000 nm coupled with a zoom lens (f/1.7,
SPECIM Ltd.), an illumination unit consisting of three pairs of 50
W quartz tungsten halogen lamps adjusted at an angle of approxi-
mately 45° to illuminate the camera’s field of view, an electric-
driving displacement platform, and a computer (Inter(R)

Core(TM)i5-5200U CPU @2.2 GHz, Acer, Taiwan, China). The
entire collection system (except the computer) was placed in a dark
box to avoid stray light that might affect the measured reflectance
from the samples.

In this study, the distance between the lens and conveyer plat-
form was 40 cm, and the bruised area of the pear was placed hori-
zontally facing upward on the platform. To obtain high-quality
images without saturation and distortion, the stepper motor was
moved at a speed of 5.5 mm/s. NIR hyperspectral image acquisi-
tion was carried out at room temperature (22±2°C). Each hyper-
spectral image of the pear samples was recorded as a three-dimen-
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Figure 3. Data acquisition system and hyperspectral 3D spectral image.

Figure 2. Pears samples: a,d): nonbruised; b,e) immediately post-bruise; c,f) peeled after 3 days of bruising.



sional image (X, Y, Z) including 1198×512 pixels in the spatial
dimension (X, Y) and 224 spectral bands ranging from 400 to 1000
nm in 2.68 nm intervals between contiguous bands in the spectral
dimension (Z).

After bruising, hyperspectral images of the control group and
experimental group samples were collected multiple times at 1, 12,
and 24 h, respectively. In this way, seven sets of pear hyperspectral
images were obtained. The acquired hyperspectral images needed
to be corrected due to the adverse effects caused by the dark cur-
rent and noise of the instrument. The resulting spectral reflectance
obtained after correction is shown by EQUATION (1):

                                                                                                    

                                                                          
(1)

where R is the corrected image, Ro is the original image, W is the
white standard reference image, and D is the dark image. To
extract the spectral data for each sample, ENVI 5.1 (The
Environment for Visualizing Images, Research System Inc., USA)
software was used to select the regions of interest (ROIs) of non-
bruised and bruised dates. ROIs 4×4 pixels in size were manually
plotted on the data, and then the average spectrum within the ROI
was calculated and recorded. A total of 490 spectral samples were
collected, comprising 70 non-bruised samples and 420 bruised
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Figure 4. STOA-GA-SVM hybrid algorithm flowchart.



samples. The bruised samples include 210 compression bruises
and 210 collision bruises, with 70 samples for each type at three
different post-injury intervals (1 h, 12 h, and 24 h).

Spectral data preprocessing
The spectral data obtained by the hyperspectral imaging sys-

tem contain not only sample information but also background
information and noise (Yuan et al., 2022). Therefore, it is neces-
sary to preprocess the spectral data. Multiple scattering correction

(MSC) is a transformation method used to compensate for additive
and/or multiplicative effects in spectral data (Maleki et al., 2007).

Wavelength selection methods
During hyperspectral imaging acquisition, a large amount of

spectral data is generated. In the full spectra, some spectral bands
are highly correlated, and some can contain redundant information
(Dong et al., 2015). Optimal wavelength selection enables one to
eliminate redundant spectra data to improve the prediction accura-
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Figure 6. Score plots of the first three principal components of the PCA.

Figure 5. Comparison of the average spectra measured for pear samples in each sample group in the experiment.



cy and facilitate model interpretation (Jie et al., 2013). Hence, it is
necessary to find the most influential effective wavelengths (EWs)
for quality assessment. In this study, principal component analysis
(PCA) and uninformative variable elimination (UVE) were applied
to select EWs from the full spectra (FS).

Principal component analysis
PCA is an excellent dimensionality reduction method with the

advantages of enhancing the information content of hyperspectral
data, isolating noisy signals and reducing the dimensionality of the
data, which can be used to transform mutually redundant data
information into mutually uncorrelated data and replace the origi-
nal spectral information with less data information (Ji et al., 2019;
Li et al., 2018; Li et al., 2021).

Uninformative variable elimination
UVE is a method built upon a PLS model with a central goal

of eliminating uninformative variables, thereby enhancing model
precision and reducing bias in the eigenvalues. The optimization
process consists of determining the optimal model complexity
using RMSEP as the metric. Then, a random variable matrix R is
combined with X to form matrix XR. From there, PLS models are
calculated, regression coefficients are determined, and variables
are evaluated based on the criterion cj = bj / s(bj). Those variables
below the maximum absolute value are discarded from X and
incorporated into a new X matrix, Xnew. The final PLS models are
constructed and predictions are made, with the new model’s pre-
dictive capacity gauged through cross-validated RMSEPnew.
Depending on the comparison of RMSEPnew and RMSEP, the
optimization process may be terminated or repeated with adjusted
parameters. The UVE method, by dismissing uninformative vari-
ables and integrating a feedback loop for continual model enhance-
ment, provides an effective tool in improving model performance
and predictability (Abbott et al., 1997).

Model building methods
The pear spectral data were divided into two sets: a total of 392

spectral data were selected randomly from 490 spectral data as the
calibration set for building the calibration model, and the remain-
ing 98 spectral data were used as the validation set to verify the
predictive ability of the calibration model. None of the samples
were used for both the calibration and validation sets.

Extreme learning machine
The Extreme Learning Machine (ELM) is a single hidden layer

machine learning model that can be used to generate the first layer
parameters through a stochastic policy. It has been rapidly devel-
oped in various fields because it does not require backpropagation
to correct the parameters, greatly increases the speed of model
operation, and has a simple structure (Xiao et al., 2022).

Support vector machine
SVM is a supervised classification method based on statistical

learning theory and structural risk minimization. It achieves data
classification by finding the hyperplane that maximizes the data
interval. SVM has evolved to include various kernel functions for
different tasks, such as linear kernels, sigmoid kernels, radial basis
function (RBF) kernels, and polynomial kernels. SVM-RBF,
formed by the combination of SVM and RBF, is adept at handling
nonlinear classification problems. In addition, a grid search proce-
dure is used to optimize the SVM parameters c and g (Yang et al.,
2021; Zhang et al., 2021).

Hybrid algorithm
The STOA-GA-SVM hybrid algorithm is a method for simul-

taneous feature selection and parameter optimization (Jia et al.,
2022). The flowchart for the STOA-GA-SVM algorithm is shown
in Figure 4, and the detailed process is described as follows: i) the
data within the dataset is normalized so that all the data range
between [0,1], and then each feature is binned so that the solution
of the feature is limited to {0,1}; ii) the initialized populations are
generated based on the maximum and minimum values of popula-
tion size and parameters; iii) the parameters c, g for the generated
SVM and the corresponding feature subsets are input to the SVM
to complete the training and testing, and the individual fitness
value f1 and the population average fitness value f2 are calculated;
iv) if f1 < f2, the individual position according to the selection,
crossover and mutation operations of GA are updated, otherwise
the current individual position is updated according to the global
optimization and local optimization of STOA; v) binary features
with the solution “1” are selected from the dataset, and the features
c and g selected from the dataset are input into the SVM together
to construct the STOA-GA-SVM classifier; vi) the fitness value is
calculated using cross-validation, and the optimal solution is
updated if there is a better solution than the current one; vii) it is
determined whether the maximum number of iterations is reached,
and, if so, the optimal value is output, otherwise one skips to step
3 and continues with the process. The processing of the spectral
data was carried out using MATLAB R 2016b.

Model evaluation
Accuracy, sensitivity (also known as True Positive Rate, TPR),

and specificity (also known as True Negative Rate, TNR) are key
metrics used to evaluate classification models. Accuracy describes
the overall correctness of the model, expressing the ratio of cor-
rectly classified samples out of all samples. Sensitivity, on the
other hand, measures the model’s performance on positive samples
by showing the proportion of actual positives which are correctly
identified. Specificity complements Sensitivity by measuring the
proportion of actual negatives that are correctly identified, demon-
strating the model’s performance on negative samples. These met-
rics are calculated using the following formulas:

                                                                                                    

                                                            
(2)

                                                                                                    

                                                                          
(3)

                                                                          
(4)

In these equations, TP represents the number of true positives,
which are positive samples that have been correctly identified. FN
stands for false negatives, which are positive samples that are erro-
neously identified as negative. TN denotes true negatives negative
samples that are correctly classified, and FP represents false posi-
tives negative samples that are incorrectly classified as positive.
These metrics holistically provide a comprehensive understanding
of the model’s capability in predicting different classes.
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Results
Hyperspectral reflectance spectra

As depicted in Figure 5, the reflection spectra curves for non-
bruised pears and pears with various bruises exhibit a similar trend,
with significant noise interference observed in the wavelength
range of 400-450 nm. Consequently, a total of 204 wavelengths
ranging from 450-1000 nm were selected for subsequent analysis
to avoid this noise. Additionally, two distinct absorption valleys
are observed in the S1 region (650-800 nm) and S2 region (950-
1000 nm). The spectral absorption valleys around 680nm are pre-
dominantly absorbed by the carotenoids and chlorophyll pigments
present on the surface of the pear (Abbott et al., 1997). Similarly,
the absorption valleys appearing near 960nm are indicative of the
pear’s moisture absorption, effectively reflecting the water content
information within the fruit (ElMasry et al., 2008; Huang et al.,
2015). In general, the reflectance of bruised areas is lower than that
of healthy areas across the visible to near-infrared spectrum (450-
1000 nm), which is a trend in agreement with Lee et al. (2014).
This discrepancy in reflectance likely stems from the altered cellu-
lar structure in bruised areas, variations in water content, and shifts
in biochemical components like sugars, acids, and phenolic com-
pounds, culminating in pronounced differences in spectral absorp-
tion characteristics between bruised and unbruised pears.

Selection of the effective wavelengths
PCA

By using PCA to reduce the dimensionality of the spectral data,
the original 204 dimensions were reduced to 75 dimensions with a
cumulative contribution of over 99.99%, fully characterizing the
original spectral information. The contribution rates and cumula-
tive contribution rates for the first five principal components are
shown in Table 1, with a cumulative contribution rate of 99.12%.
And the Figure 6 depicted the score plots of the first three principal

components of the PCA performed, which highlights clusters with
different bruising type and bruise time for pears. Among the
bruised samples, the majority of clusters are relatively dense, and
there is contact and overlap between them, making them more
challenging to distinguish.

UVE
UVE is performed by introducing random variables in the

spectral matrix and then building a PLS cross-validation model to
use the variable with the lowest RMSECV value as the best vari-
able. As shown in Figure 7, the left side of the vertical line repre-
sents the stable value of the spectral variable, the right side of the
vertical line represents the stable value of the noise variable, and
the two horizontal dashed lines denote the selection thresholds for
the variables. The inner dashed line denotes the rejected useless
information, and the outer side denotes the useful information. In
this study, using UVE allowed us to focus on pertinent spectral fea-
tures for the detection of fruit bruises. By eliminating uninforma-
tive variables, we could build a more effective model with
improved predictive capability. The influence of this process on
our results is thus one of enhancement of prediction accuracy and
model efficiency. A total of 50 features are retained.

Bruise identification results
The parameters used in this study are detailed in Table 2. For

PCA-ELM and UVE-ELM, the number of hidden layer nodes is
set at 77 and 96, respectively. The c and g values for PCA-SVM,
UVE-SVM, and STOA-GA-SVM are respectively set at 256 and
16, 256 and 147.03, and 400 and 42.71.

Five different methods were applied to identify the bruise type
and time for the pears. The specific results are presented in Table
3. The accuracies of the PCA-ELM calibration and validation sets
were 98.99% and 89.29%, respectively. For UVE-ELM, the cali-
bration and validation sets showed accuracies of 98.98% and
87.97%, respectively. The PCA-SVM calibration and validation
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Figure 7. Stability distribution of variables used for prediction by UVE.



sets achieved accuracies of 96.94% and 88.78%, respectively,
while those of the UVE-SVM were 99.23% and 88.78%, showing
varying degrees of overfitting. The STOA-GA-SVM model exhib-
ited accuracies of 97.19% and 92.86% for the calibration and val-
idation sets, respectively. 

The STOA-GA-SVM model exhibits the highest overall accu-
racy, as well as boasting the highest sensitivity, achieving a rate of
91.85%. This indicates the model’s effectiveness in predicting the
type and timing of pear bruising. In food quality control and
inspection, the ability to identify all negative samples, often at the
expense of over-detection, is generally prioritized. Therefore, high
specificity is often considered more important than high sensitivi-
ty. The STOA-GA-SVM model excels in this regard, with an
impressive specificity of 98.82%, outperforming all other models.

This underscores its superiority and applicability in the field.
The number of features retained by the STOA-GA-SVM

model falls between that of PCA and UVE (59, compared to 75 for
PCA and 50 for UVE); its prediction time of 0.0833 seconds was
longer than that of PCA-ELM, UVE-ELM and UVE-SVM, but
shorter than that of PCA-SVM. This timing makes it practically
viable, and the STOA-GA-SVM model emerged as the most effec-
tive classification model.

Discussion
According to Table 4, the PCA-SVM model achieves an accu-

racy of 95.23% for identifying nonbruised pears, while the UVE-
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Figure 8. Visualized confusion matrix for five different modeling methods.



SVM model attains a recognition accuracy of 96.67% for pears
with 1 h bruise. Additionally, other models such as PCA-ELM,
UVE-ELM, and STOA-GA-SVM demonstrate perfect accuracy,
reaching 100% for both nonbruised and 1 h bruised pears. As illus-
trated in Figure 5, the average spectral reflectance of nonbruised
pears is significantly higher than that of other bruised types, mak-
ing them easily distinguishable. For 1 h bruised pears, chemical
changes within the first hour post-injury result in distinct spectral
differences compared to nonbruised, 12 h bruised, and 24 h bruised
pears, facilitating their easier identification (Li et al., 2022a).

As inferred from Figure 8, the PCA-ELM model exhibits rela-
tively low recognition accuracy for compression bruising for 24 h
and collision bruising for 12 h, at 70% and 73.33%, respectively.
Similarly, the UVE-ELM model shows low recognition accuracy
for these conditions, both at 80%. Additionally, the UVE-ELM
model achieves only 77.78% accuracy for collision bruising for 
24 h. The PCA-SVM model has recognition accuracies of 80% for
compression bruising for 24 h and 73.33% for collision bruising
for 12 h. The UVE-SVM model demonstrates accuracies of 70%
and 80% for compression bruising for 24 h and collision bruising
for 12 h, respectively. Moreover, the UVE-SVM model achieves
only 76.92% accuracy for compression bruising for 12 h. These
four methods show low recognition accuracy for compression
bruising for 24 h and collision bruising for 12 h. This is mainly due

to the misclassification of samples with compression bruising for
24 h as having compression bruising for 1 h, collision bruising for
1 h, and collision bruising for 24 h, and samples with collision
bruising for 12 h as having collision bruising for 24 h.
Additionally, samples with compression bruising for 1 h are often
misclassified as having collision bruising for 1 h, and samples with
compression bruising for 12 h are misclassified as having com-
pression bruising for 1 h, compression bruising for 24 h, and colli-
sion bruising for 12 h. Samples with collision bruising for 1 h are
often misclassified as having compression bruising for 1 h and 24
h. For the recognition accuracy of collision bruising for 24 h,
except for the UVE-ELM model, all other models achieve 100%
accuracy.

From the above description and Table 4, it can be seen that the
identification accuracy for pears with bruising at 12 h and 24 h
post-injury ranges between 78.57%-85.71% and 84.21%-89.47%,
respectively. It is noteworthy that within this context, the STOA-
GA-SVM model utilized in this study is equal to or surpasses other
models in the accuracy of both the timing and the type of bruise
recognition. When excluding pear samples with 1-hour bruising,
the detection accuracy for bruise timing incrementally improves.
This implies a correlation between the progression of time and the
increase of detection accuracy. This is because, after pear bruise,
the bruised area begins to brown, reaching a peak around 12 h.
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Table 1. Contribution rate and cumulative contribution rate of the first 5 principal components.

PC                                                        PC1                        PC2                            PC3                            PC4                                  PC5

Contribution rates                                        80.62                          12.68                               4.36                                 1.10                                        0.36
Cumulative contribution rates                     80.62                          93.30                              97.66                               98.76                                      99.12

Table 2. Parameters for each model.

Methods                 PCA-ELM            UVE-ELM                     PCA-SVM                      UVE-SVM                        STOA-GA-SVM

        Hidden layer nodes number                                        c, g
Value                                    77                                96                                      256, 16                              256, 147.03                                    400, 42.71

Table 3. Comprehensive identification results for different models: accuracy, sensitivity, and specificity on both calibration and validation sets.

Model                                   Accuracy           Sensitivity (TPR) Specificity (TNR)                     Time (s)
                                                           Cal.            Val.                          Cal.                Val.                 Cal.             Val.                          Val.

PCA-ELM                                               98.99%        89.29%                        98.52%             90.01%              99.74%         98.52%                        0.0009
UVE-ELM                                              98.98%        87.97%                        99.25%             87.72%              99.87%         98.33%                        0.0009
PCA- SVM                                             96.94%        88.78%                        96.96%             88.47%              99.49%         98.16%                        0.1409
UVE-SVM                                              99.23%        88.78%                        99.24%             87.58%              99.87%         98.16%                        0.0482
STOA-GA-SVM                                     97.19%        92.86%                        95.98%             91.85%              99.32%         98.82%                        0.0833
Cal., calibration set; Val., validation set.

Table 4. Validation accuracy of recognizing the bruise time and bruise type.

Methods                  Nonbruised                                           Bruising time                              Bruising type
                                                                       Bruise 1 h         Bruise 12 h      Bruise 24 h                     Compression          Collision

PCA-ELM                           100%                                100%                    82.14%                89.47%                                  94.29%                    97.62%
UVE-ELM                          100%                                100%                    85.71%                84.21%                                  91.43%                    97.62%
PCA-SVM                         95.23%                               100%                    78.57%                89.47%                                  94.29%                    97.62%
UVE-SVM                          100%                               96.67%                   78.57%                89.47%                                  91.43%                    97.62%
STOA-GA-SVM                100%                                100%                    85.71%                89.47%                                  94.29%                      100%



Thus, pear samples with 1 h bruise are more distinguishable from
intact, 12 h bruised, and 24 h bruised pears. Notably, the models
exhibited higher accuracy in recognizing types of bruising wherein
they were able to identify collision bruising with a range of
97.62%-100% accuracy, as compared to compression bruising
ranging from 91.43%-94.29%. The main reason is the differing
mechanisms of pear bruise by compression and collision (Guo et
al., 2021). Compression bruising typically results in a more exten-
sive bruised area on the pear’s surface, leading to a more uniform
disruption of the cellular structure and shallower bruise depth. In
contrast, collision bruising is likely to cause localized, deeper
internal injuries, with the bruised areas being more concentrated
and profound. The results presented in this paper bear similarity to
those of other comparable studies (Fan et al., 2017; Huang et al.,
2015; Li et al., 2021; Liu et al., 2023; Liu et al., 2024; Yuan et al.,
2021). However, the scenarios in these studies are not as complex
as those addressed in this paper, with most focusing only on the
degree of bruise or the time of bruise for identification. This rein-
forces that STOA-GA-SVM can effectively automate the selection
of appropriate spectral features and parameters for the model,
holding its ground not only in bruise detection but also in estimat-
ing the timing of the bruise occurrence.

While the method employed in this study enhances the accura-
cy of bruise recognition to a certain degree, its ability to discern
compression bruising and accurately determine the timing of bruis-
ing occurrence remains an area of improvement. There’s room for
improvement in the work ahead, with future research centered on
identifying more effective ways to further exploit the spectral
information of compression bruising and bruising timing to
improve recognition accuracy. Additionally, this study only con-
ducted bruising experiments on the equatorial region of pears and
collected hyperspectral data with the hyperspectral lens vertically
aligned to the bruised area. Future experiments should randomly
bruise various parts of the pear and collect hyperspectral images
from multiple angles to cover all possible real-world scenarios in
pear bruise detection.

Conclusions
This study proposes that VIS/NIR hyperspectral imaging tech-

nology in the spectral range of 400–1000 nm shows good potential
for the effective detection of different bruise types and times for
pears. Spectral images for nonbruised pears and pears subjected to
mechanical collision and compression bruises were taken at three
different time intervals (1, 12, and 24 h). Spectral data from the
ROI was then extracted from the hyperspectral images using
ENVI. After analyzing and processing the spectral data obtained
for the samples, PCA-ELM, UVE-ELM, PCA-SVM, UVE-SVM
and STOA-GA-SVM classification models were constructed to
achieve accurate classification of bruise type and bruise time for
pears. The results demonstrate that the STOA-GA-SVM is an opti-
mal model for detecting pear bruises and bruise timing. In the
STOA-GA-SVM model, the accuracy for the calibration set and
validation set is 97.19% and 92.86%, respectively. Additionally,
the model achieves the highest sensitivity and specificity among
the comparison models, with values of 91.85% and 98.82% on the
validation set. This model can be used to accurately identify pears
with and without bruising and can be used to better identify pears
with collision bruising and the bruising time. For compression
bruising and bruising time recognition accuracy, the model can
meet the actual use requirements. This study shows that the use of
the VIS/NIR hyperspectral technique combined with the STOA-

GA-SVM algorithm is feasible for the rapid and nondestructive
identification of the bruise type and time for pears.
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