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Abstract 

Early detection of bruising is one of the major challenges in postharvest quality sorting processes for 

pears. In this study, visible/near infrared (VIS/NIR) hyperspectral imaging (400–1000 nm) was 

utilized for early detection of pear bruise type and timing (1, 12, and 24 h post-bruise). Spectral 

images of nonbruised and mechanically bruised pears (collision and compression) were captured at 

these intervals for modeling. Spectral data was processed using principal component analysis (PCA) 

and uninformative variable elimination (UVE) to select optimum wavelengths. Classification models 

were then built using an extreme learning machine (ELM) and support vector machine (SVM), and 

compared with a model combining genetic algorithm, sooty tern optimization algorithm, and SVM 

(STOA-GA-SVM). For PCA-ELM, UVE-ELM, PCA-SVM, and UVE-SVM models, the calibration 

set accuracies were 98.99%, 98.98%, 96.94%, and 99.23% respectively. And the validation set 

accuracies were 89.29%, 87.97%, 88.78%, and 88.78% respectively. The STOA-GA-SVM model 

shows the best performance, and the accuracy of the calibration set and validation set is determined 

to be 97.19% and 92.86%, respectively. This study shows that the use of the VIS/NIR hyperspectral 

imaging technique combined with the STOA-GA-SVM algorithm is feasible for the rapid and 

nondestructive identification of the bruise type and time for pears. 

 

Introduction 

Pear (Pyrus spp.) is a favorite fruit of consumers due to its rich vitamins and minerals with high 

nutritional value. However, pears are easily bruised by various activities during harvesting, 

transportation, grading, and sorting, such as collision and compression (Arango et al., 2021; Stropek 

and Gołacki, 2015). Bruising not only injures the tissue structure of the pear, leading to loss of 

nutritional value and increased risk of microbial infestation, but also degrades the appearance quality 

of pears, causing significant economic loss (Li et al., 2016; Opara and Pathare, 2014). Hence, 

detecting and distinguishing the type and timing of pear bruising is crucial as it provides a reference 

for quickly identifying the process causing the bruise and taking prompt measures to reduce economic 

losses. Furthermore, insights into the specific types and timings of the bruises can guide the design 

enhancements and optimization of equipment used in the harvest, grading, packaging, storage, and 

transportation of fruits and vegetables (D. Y. Liu et al., 2024). Consequently, accurately identifying 

the type and timing of pear bruises plays a crucial role. It holds significant importance for the pear 



 

 

industry (Opara and Pathare, 2014; Yuan et al., 2021). 

Near-infrared spectroscopy (NIRS), as an advanced technique, has been successfully applied to the 

nondestructive detection of the internal quality of various fruits and vegetables (Nicolaï et al., 2014), 

such as persimmons (Hasnah Ar et al., 2019), kiwifruits (Liu et al., 2017), and peaches (Guo et al., 

2016). However, NIR spectra are usually obtained at a single point for a sample. Hyperspectral 

imaging technology has emerged as a relatively rapid and accurate detection technique for 

horticultural products over the past decade (Zhang et al., 2014) because it can be used to provide 

more detailed and complete information, including internal structure characteristics, morphological 

information, and chemical composition for a sample (Rahman et al., 2017). Recently, hyperspectral 

imaging technology has been widely used for the detection of bruising in fruits, such as apple (Huang 

et al., 2015; Xing and De Baerdemaeker, 2005), peach (Li et al., 2022b; Li et al., 2018; Li et al., 

2021), blueberry (Fan et al., 2017), kiwifruit (Gao et al., 2021), jujube (Thien Pham and Liou, 2022; 

Yuan et al., 2021), etc.  

Recently, hyperspectral imaging systems have been widely used to detect early bruises on pears. 

However, most current studies focus only on identifying early bruises (Fang et al., 2019; Jiang et al., 

2016; Lee et al., 2014; Li et al., 2024), with fewer investigations simultaneously addressing multiple 

factors such as bruising type, and timing (Fu and Wang, 2022; Liu et al., 2023; Liu et al., 2024; Su et 

al., 2022). Despite some advancements, these studies still have limitations. Currently, there are two 

primary methods for detecting pear bruises using hyperspectral imaging. The first method involves 

stepwise feature spectral extraction followed by target identification model building, which still relies 

on manual expertise to determine whether the selected features and classification models perform 

well. The second approach employs deep learning for an end-to-end methodology that autonomously 

extracts features from hyperspectral images to detect fruit damage. While this method shows promise, 

it requires extensive datasets and robust hardware. 

Consequently, this paper proposes a novel approach combining the genetic algorithm (GA) and the 

sooty tern optimization algorithm (STOA) to optimize both the support vector machine (SVM) 

hyperparameters and feature selection simultaneously. This improved STOA-GA-SVM method 

enables the automatic discovery of abstract features in the spectrum and obtains optimal feature 

classification results. The feasibility of the proposed STOA-GA-SVM model will be analyzed in 

detecting pear bruises and the associated bruise timing.  



 

 

Materials and Methods 

In this section, the details for each part of the experimental process are presented, including sample 

preparation, experimental setup, spectral data acquisition, data preprocessing, feature selection, 

model building and model evaluation, and the overall flow is shown in Figure 1. 

 

Sample preparation 

All pears (variety ‘Crystal’) in this study were purchased from the local market in Harbin, 

Heilongjiang, China. A total of 210 pears without any visual defects (such as scars, cuts, shrivel, etc.) 

were selected, washed and numbered individually. To keep the samples at approximately the same 

temperature as room temperature, they were stored in an environment with a temperature of 22 °C 

and relative humidity of 60% for 24 h. The samples were randomly divided into three batches, each 

containing 70 pears. One batch was used for preparing collision bruised samples, a second batch was 

used for obtaining compression bruised samples, and a third batch without any treatment was used as 

a control and named nonbruised samples. 

In preparing the samples with compression bruises, the samples were placed on the platform of a 

computer-controlled universal testing machine (WDW-100, Changchun Kexin Test Equipment Co 

Ltd., Changchun, China). The movement speed of the lower indenter of the universal testing machine 

was set to 10 mm/min. When the deformation of each pear sample reached 5 mm, the movement of 

the indenter was stopped and held for 20 s, and then the sample was taken out. Collision bruise 

samples were prepared by using steel balls with a weight of 225 g placed on a slope inclined at 20°. 

The balls were rolled down the slope from a height of 10 cm above the ground to hit the equatorial 

zone of the pear, with one impact made on each sample. Figure 2 shows selected images of pear 

samples. There is no significant difference in appearance between pear samples immediately post-

bruising and the nonbruised samples. Three days post-compression bruising, it remains challenging 

to observe the bruise even after peeling off the skin. In comparison, three days post-collision bruising, 

the bruised areas become slightly brown and visible once the skin is removed. 

 

Acquisition of hyperspectral images and spectral extraction 

Figure 3 shows the structural information for the hyperspectral acquisition system. This system 

mainly consists of the following components: a charged couple device (CCD) camera, an imaging 



 

 

spectrograph (FX10E, SPECIM Ltd., Oulu, Finland) that covers the spectral range of 400-1000 nm 

coupled with a zoom lens (f/1.7, SPECIM Ltd., Oulu, Finland), an illumination unit consisting of 

three pairs of 50 W quartz tungsten halogen lamps adjusted at an angle of approximately 45° to 

illuminate the camera’s field of view, an electric-driving displacement platform, and a computer 

(Inter(R) Core(TM)i5-5200U CPU @2.2 GHz, Acer, Taiwan, China). The entire collection system 

(except the computer) was placed in a dark box to avoid stray light that might affect the measured 

reflectance from the samples. 

In this study, the distance between the lens and conveyer platform was 40 cm, and the bruised area of 

the pear was placed horizontally facing upward on the platform. To obtain high-quality images 

without saturation and distortion, the stepper motor was moved at a speed of 5.5 mm/s. NIR 

hyperspectral image acquisition was carried out at room temperature (22 ± 2 °C). Each hyperspectral 

image of the pear samples was recorded as a three-dimensional image (X, Y, Z) including 1198⋅512 

pixels in the spatial dimension (X, Y) and 224 spectral bands ranging from 400 to 1000 nm in 2.68 

nm intervals between contiguous bands in the spectral dimension (Z). 

After bruising, hyperspectral images of the control group and experimental group samples were 

collected multiple times at 1, 12, and 24 h, respectively. In this way, seven sets of pear hyperspectral 

images were obtained. The acquired hyperspectral images needed to be corrected due to the adverse 

effects caused by the dark current and noise of the instrument. The resulting spectral reflectance 

obtained after correction is shown by Eq. (1): 

 o= R DR
W D

−

−
 (1) 

where R is the corrected image, Ro is the original image, W is the white standard reference image, and 

D is the dark image. 

To extract the spectral data for each sample, ENVI 5.1 (The Environment for Visualizing Images, 

Research System Inc., USA) software was used to select the regions of interest (ROIs) of nonbruised 

and bruised dates. ROIs 4×4 pixels in size were manually plotted on the data, and then the average 

spectrum within the ROI was calculated and recorded. A total of 490 spectral samples were collected, 

comprising 70 non-bruised samples and 420 bruised samples. The bruised samples include 210 

compression bruises and 210 collision bruises, with 70 samples for each type at three different post-

injury intervals (1 hour, 12 hours, and 24 hours) 



 

 

Spectral data preprocessing 

The spectral data obtained by the hyperspectral imaging system contain not only sample information 

but also background information and noise (Yuan et al., 2022). Therefore, it is necessary to preprocess 

the spectral data. Multiple scattering correction (MSC) is a transformation method used to 

compensate for additive and/or multiplicative effects in spectral data (Maleki et al., 2007). 

 

Wavelength selection methods 

During hyperspectral imaging acquisition, a large amount of spectral data is generated. In the full 

spectra, some spectral bands are highly correlated, and some can contain redundant information 

(Dong et al., 2015). Optimal wavelength selection enables one to eliminate redundant spectra data to 

improve the prediction accuracy and facilitate model interpretation (Jie et al., 2013). Hence, it is 

necessary to find the most influential effective wavelengths (EWs) for quality assessment. In this 

study, principal component analysis (PCA) and uninformative variable elimination (UVE) were 

applied to select EWs from the full spectra (FS). 

 

Principal component analysis 

PCA is an excellent dimensionality reduction method with the advantages of enhancing the 

information content of hyperspectral data, isolating noisy signals and reducing the dimensionality of 

the data, which can be used to transform mutually redundant data information into mutually 

uncorrelated data and replace the original spectral information with less data information (Ji et al., 

2019; Li et al., 2018; Li et al., 2021). 

 

Uninformative variable elimination 

UVE is a method built upon a PLS model with a central goal of eliminating uninformative variables, 

thereby enhancing model precision and reducing bias in the eigenvalues. The optimization process 

consists of determining the optimal model complexity using RMSEP as the metric. Then, a random 

variable matrix R is combined with X to form matrix XR. From there, PLS models are calculated, 

regression coefficients are determined, and variables are evaluated based on the criterion cj = bj / 

s(bj). Those variables below the maximum absolute value are discarded from X and incorporated into 

a new X matrix, Xnew. The final PLS models are constructed and predictions are made, with the new 



 

 

model's predictive capacity gauged through cross-validated RMSEPnew. Depending on the 

comparison of RMSEPnew and RMSEP, the optimization process may be terminated or repeated with 

adjusted parameters. The UVE method, by dismissing uninformative variables and integrating a 

feedback loop for continual model enhancement, provides an effective tool in improving model 

performance and predictability (Abbott et al., 1997). 

 

Model building methods 

The pear spectral data were divided into two sets: A total of 392 spectral data were selected randomly 

from 490 spectral data as the calibration set for building the calibration model, and the remaining 98 

spectral data were used as the validation set to verify the predictive ability of the calibration model. 

None of the samples were used for both the calibration and validation sets. 

 

Extreme learning machine 

The Extreme Learning Machine (ELM) is a single hidden layer machine learning model that can be 

used to generate the first layer parameters through a stochastic policy. It has been rapidly developed 

in various fields because it does not require backpropagation to correct the parameters, greatly 

increases the speed of model operation, and has a simple structure (Xiao et al., 2022). 

 

Support vector machine 

SVM is a supervised classification method based on statisticlial learning theory and structural risk 

minimization. It achieves data classification by finding the hyperplane that maximizes the data 

interval. SVM has evolved to include various kernel functions for different tasks, such as linear 

kernels, sigmoid kernels, radial basis function (RBF) kernels, and polynomial kernels. SVM-RBF, 

formed by the combination of SVM and RBF, is adept at handling nonlinear classification problems. 

In addition, a grid search procedure is used to optimize the SVM parameters c and g (Yang et al., 

2021; Zhang et al., 2021). 

 

Hybrid algorithm 

The STOA-GA-SVM hybrid algorithm is a method for simultaneous feature selection and parameter 

optimization (Jia et al., 2022). The flowchart for the STOA-GA-SVM algorithm is shown in Figure 



 

 

4, and the detailed process is described as follows: (1) the data within the dataset is normalized so 

that all the data range between [0,1], and then each feature is binned so that the solution of the feature 

is limited to {0,1}; (2) the initialized populations are generated based on the maximum and minimum 

values of population size and parameters; (3) the parameters c, g for the generated SVM and the 

corresponding feature subsets are input to the SVM to complete the training and testing, and the 

individual fitness value f1 and the population average fitness value f2 are calculated; (4) if f1 < f2, the 

individual position according to the selection, crossover and mutation operations of GA are updated, 

otherwise the current individual position is updated according to the global optimization and local 

optimization of STOA; (5) binary features with the solution "1" are selected from the dataset, and the 

features c and g selected from the dataset are input into the SVM together to construct the STOA-

GA-SVM classifier; (6) the fitness value is calculated using cross-validation, and the optimal solution 

is updated if there is a better solution than the current one; (7) it is determined whether the maximum 

number of iterations is reached, and, if so, the optimal value is output, otherwise one skips to step 3 

and continues with the process. The processing of the spectral data was carried out using MATLAB 

R 2016b. 

 

Model evaluation 

Accuracy, Sensitivity (also known as True Positive Rate, TPR), and Specificity (also known as True 

Negative Rate, TNR) are key metrics used to evaluate classification models. Accuracy describes the 

overall correctness of the model, expressing the ratio of correctly classified samples out of all samples. 

Sensitivity, on the other hand, measures the model's performance on positive samples by showing the 

proportion of actual positives which are correctly identified. Specificity complements Sensitivity by 

measuring the proportion of actual negatives that are correctly identified, demonstrating the model's 

performance on negative samples. These metrics are calculated using the following formulas: 

 TP TNAccuracy
TP TN FP FN

+
=

+ + +
 (2) 

 TPTPR
TP FN

=
+

 (3) 

 TNTNR
TN FP

=
+

 (4) 



 

 

In these equations, TP represents the number of True Positives, which are positive samples that have 

been correctly identified. FN stands for False Negatives, which are positive samples that are 

erroneously identified as negative. TN denotes True Negatives negative samples that are correctly 

classified, and FP represents False Positives negative samples that are incorrectly classified as 

positive. These metrics holistically provide a comprehensive understanding of the model's capability 

in predicting different classes. 

 

Results 

Hyperspectral reflectance spectra 

As depicted in Figure 5, the reflection spectra curves for nonbruised pears and pears with various 

bruises exhibit a similar trend, with significant noise interference observed in the wavelength range 

of 400-450 nm. Consequently, a total of 204 wavelengths ranging from 450-1000 nm were selected 

for subsequent analysis to avoid this noise. Additionally, two distinct absorption valleys are observed 

in the S1 region (650-800 nm) and S2 region (950-1000 nm). The spectral absorption valleys around 

680nm are predominantly absorbed by the carotenoids and chlorophyll pigments present on the 

surface of the pear (Abbott et al., 1997). Similarly, the absorption valleys appearing near 960nm are 

indicative of the pear's moisture absorption, effectively reflecting the water content information 

within the fruit (ElMasry et al., 2008; Huang et al., 2015). 

In general, the reflectance of bruised areas is lower than that of healthy areas across the visible to 

near-infrared spectrum (450-1000 nm), which is a trend in agreement with Lee et al (Lee et al., 2014). 

This discrepancy in reflectance likely stems from the altered cellular structure in bruised areas, 

variations in water content, and shifts in biochemical components like sugars, acids, and phenolic 

compounds, culminating in pronounced differences in spectral absorption characteristics between 

bruised and unbruised pears. 

 

Selection of the Effective Wavelengths 

PCA 

By using PCA to reduce the dimensionality of the spectral data, the original 204 dimensions were 

reduced to 75 dimensions with a cumulative contribution of over 99.99%, fully characterizing the 

original spectral information. The contribution rates and cumulative contribution rates for the first 



 

 

five principal components are shown in Table 1, with a cumulative contribution rate of 99.12%. And 

the Figure 6 depicted the score plots of the first three principal components of the PCA performed, 

which highlights clusters with different bruising type and bruise time for pears. Among the bruised 

samples, the majority of clusters are relatively dense, and there is contact and overlap between them, 

making them more challenging to distinguish. 

 

UVE 

UVE is performed by introducing random variables in the spectral matrix and then building a PLS 

cross-validation model to use the variable with the lowest RMSECV value as the best variable. As 

shown in Figure 7, the left side of the vertical line represents the stable value of the spectral variable, 

the right side of the vertical line represents the stable value of the noise variable, and the two 

horizontal dashed lines denote the selection thresholds for the variables. The inner dashed line denotes 

the rejected useless information, and the outer side denotes the useful information. In this study, using 

UVE allowed us to focus on pertinent spectral features for the detection of fruit bruises. By 

eliminating uninformative variables, we could build a more effective model with improved predictive 

capability. The influence of this process on our results is thus one of enhancement of prediction 

accuracy and model efficiency. A total of 50 features are retained. 

 

Bruise identification results 

The parameters used in this study are detailed in Table 2. For PCA-ELM and UVE-ELM, the number 

of hidden layer nodes is set at 77 and 96, respectively. The c and g values for PCA-SVM, UVE-SVM, 

and STOA-GA-SVM are respectively set at 256 and 16, 256 and 147.03, and 400 and 42.71. 

Five different methods were applied to identify the bruise type and time for the pears. The specific 

results are presented in Table 3. The accuracies of the PCA-ELM calibration and validation sets were 

98.99% and 89.29%, respectively. For UVE-ELM, the calibration and validation sets showed 

accuracies of 98.98% and 87.97%, respectively. The PCA-SVM calibration and validation sets 

achieved accuracies of 96.94% and 88.78%, respectively, while those of the UVE-SVM were 99.23% 

and 88.78%, showing varying degrees of overfitting. The STOA-GA-SVM model exhibited 

accuracies of 97.19% and 92.86% for the calibration and validation sets, respectively.  

The STOA-GA-SVM model exhibits the highest overall accuracy, as well as boasting the highest 



 

 

sensitivity, achieving a rate of 91.85%. This indicates the model's effectiveness in predicting the type 

and timing of pear bruising. In food quality control and inspection, the ability to identify all negative 

samples—often at the expense of over-detection—is generally prioritized. Therefore, high specificity 

is often considered more important than high sensitivity. The STOA-GA-SVM model excels in this 

regard, with an impressive specificity of 98.82%, outperforming all other models. This underscores 

its superiority and applicability in the field. 

The number of features retained by the STOA-GA-SVM model falls between that of PCA and UVE 

(59, compared to 75 for PCA and 50 for UVE); its prediction time of 0.0833 seconds was longer than 

that of PCA-ELM, UVE-ELM and UVE-SVM, but shorter than that of PCA-SVM. This timing makes 

it practically viable, and the STOA-GA-SVM model emerged as the most effective classification 

model. 

 

Discussion 

According to Table 4, the PCA-SVM model achieves an accuracy of 95.23% for identifying 

nonbruised pears, while the UVE-SVM model attains a recognition accuracy of 96.67% for pears 

with 1 h bruise. Additionally, other models such as PCA-ELM, UVE-ELM, and STOA-GA-SVM 

demonstrate perfect accuracy, reaching 100% for both nonbruised and 1 h bruised pears. As illustrated 

in Figure 5, the average spectral reflectance of nonbruised pears is significantly higher than that of 

other bruised types, making them easily distinguishable. For 1 h bruised pears, chemical changes 

within the first hour post-injury result in distinct spectral differences compared to nonbruised, 12 h 

bruised, and 24 h bruised pears, facilitating their easier identification (Li et al., 2022a). 

As inferred from Figure 8, the PCA-ELM model exhibits relatively low recognition accuracy for 

compression bruising for 24 h and collision bruising for 12 h, at 70% and 73.33%, respectively. 

Similarly, the UVE-ELM model shows low recognition accuracy for these conditions, both at 80%. 

Additionally, the UVE-ELM model achieves only 77.78% accuracy for collision bruising for 24 h. 

The PCA-SVM model has recognition accuracies of 80% for compression bruising for 24 h and 73.33% 

for collision bruising for 12 h. The UVE-SVM model demonstrates accuracies of 70% and 80% for 

compression bruising for 24 h and collision bruising for 12 h, respectively. Moreover, the UVE-SVM 

model achieves only 76.92% accuracy for compression bruising for 12 h. These four methods show 

low recognition accuracy for compression bruising for 24 h and collision bruising for 12 h. This is 



 

 

mainly due to the misclassification of samples with compression bruising for 24 h as having 

compression bruising for 1 h, collision bruising for 1 h, and collision bruising for 24 h, and samples 

with collision bruising for 12 h as having collision bruising for 24 h. Additionally, samples with 

compression bruising for 1 h are often misclassified as having collision bruising for 1 h, and samples 

with compression bruising for 12 h are misclassified as having compression bruising for 1 h, 

compression bruising for 24 h, and collision bruising for 12 h. Samples with collision bruising for 1 

h are often misclassified as having compression bruising for 1 h and 24 h. For the recognition accuracy 

of collision bruising for 24 h, except for the UVE-ELM model, all other models achieve 100% 

accuracy. 

From the above description and Table 4, it can be seen that the identification accuracy for pears with 

bruising at 12 h and 24 h post-injury ranges between 78.57%-85.71% and 84.21%-89.47%, 

respectively. It is noteworthy that within this context, the STOA-GA-SVM model utilized in this 

study is equal to or surpasses other models in the accuracy of both the timing and the type of bruise 

recognition. When excluding pear samples with 1-hour bruising, the detection accuracy for bruise 

timing incrementally improves. This implies a correlation between the progression of time and the 

increase of detection accuracy. This is because, after pear bruise, the bruised area begins to brown, 

reaching a peak around 12 h. Thus, pear samples with 1 h bruise are more distinguishable from intact, 

12 h bruised, and 24 h bruised pears. Notably, the models exhibited higher accuracy in recognizing 

types of bruising wherein they were able to identify collision bruising with a range of 97.62%-100% 

accuracy, as compared to compression bruising ranging from 91.43%-94.29%. The main reason is the 

differing mechanisms of pear bruise by compression and collision (Guo et al., 2021). Compression 

bruising typically results in a more extensive bruised area on the pear's surface, leading to a more 

uniform disruption of the cellular structure and shallower bruise depth. In contrast, collision bruising 

is likely to cause localized, deeper internal injuries, with the bruised areas being more concentrated 

and profound. The results presented in this paper bear similarity to those of other comparable studies 

(Fan et al., 2017; Huang et al., 2015; Li et al., 2021; Liu et al., 2023; Liu et al., 2024; Yuan et al., 

2021). However, the scenarios in these studies are not as complex as those addressed in this paper, 

with most focusing only on the degree of bruise or the time of bruise for identification. This reinforces 

that STOA-GA-SVM can effectively automate the selection of appropriate spectral features and 

parameters for the model, holding its ground not only in bruise detection but also in estimating the 



 

 

timing of the bruise occurrence. 

While the method employed in this study enhances the accuracy of bruise recognition to a certain 

degree, its ability to discern compression bruising and accurately determine the timing of bruising 

occurrence remains an area of improvement. There's room for improvement in the work ahead, with 

future research centered on identifying more effective ways to further exploit the spectral information 

of compression bruising and bruising timing to improve recognition accuracy. Additionally, this study 

only conducted bruising experiments on the equatorial region of pears and collected hyperspectral 

data with the hyperspectral lens vertically aligned to the bruised area. Future experiments should 

randomly bruise various parts of the pear and collect hyperspectral images from multiple angles to 

cover all possible real-world scenarios in pear bruise detection. 

 

Conclusions 

This study proposes that VIS/NIR hyperspectral imaging technology in the spectral range of 400–

1000 nm shows good potential for the effective detection of different bruise types and times for pears. 

Spectral images for nonbruised pears and pears subjected to mechanical collision and compression 

bruises were taken at three different time intervals (1, 12, and 24 h). Spectral data from the ROI was 

then extracted from the hyperspectral images using ENVI. After analyzing and processing the spectral 

data obtained for the samples, PCA-ELM, UVE-ELM, PCA-SVM, UVE-SVM and STOA-GA-SVM 

classification models were constructed to achieve accurate classification of bruise type and bruise 

time for pears. The results demonstrate that the STOA-GA-SVM is an optimal model for detecting 

pear bruises and bruise timing. In the STOA-GA-SVM model, the accuracy for the calibration set and 

validation set is 97.19% and 92.86%, respectively. Additionally, the model achieves the highest 

sensitivity and specificity among the comparison models, with values of 91.85% and 98.82% on the 

validation set. This model can be used to accurately identify pears with and without bruising and can 

be used to better identify pears with collision bruising and the bruising time. For compression bruising 

and bruising time recognition accuracy, the model can meet the actual use requirements. This study 

shows that the use of the VIS/NIR hyperspectral technique combined with the STOA-GA-SVM 

algorithm is feasible for the rapid and nondestructive identification of the bruise type and time for 

pears. 
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Table 1. Contribution rate and cumulative contribution rate of the first 5 principal components. 

PC PC1 PC2 PC3 PC4 PC5 

contribution rates 80.62 12.68 4.36 1.10 0.36 

cumulative 

contribution rates 
80.62 93.30 97.65 98.76 99.12 

 

 

Table 2. Parameters for each model. 

Methods 

PCA-ELM UVE-ELM PCA-SVM UVE-SVM 
STOA-GA-

SVM 

hidden layer nodes 

number 
c, g 

Value 77 96 256, 16 256, 147.03 400, 42.71 

 

 

Table 3. Comprehensive identification results for different models: accuracy, sensitivity, and 

specificity on both calibration and validation sets. 

Model 

Accuracy Sensitivity(TPR) Specificity(TNR) Time 

(s) 

Cal.* Val.* Cal. Val. Cal. Val. Val. 

PCA-ELM 98.99% 89.29% 98.52% 90.01% 99.74% 98.52% 0.0009 

UVE-ELM 98.98% 87.97% 99.25% 87.72% 99.87% 98.33% 0.0009 

PCA- SVM 96.94% 88.78% 96.96% 88.47% 99.49% 98.16% 0.1409 

UVE-SVM 99.23% 88.78% 99.24% 87.58% 99.87% 98.16% 0.0482 

STOA-GA-

SVM 
97.19% 92.86% 95.98% 91.85% 99.32% 98.82% 0.0833 

*Cal. means calibration set, Val. means validation set. 

 

 



 

 

Table 4. Validation accuracy of recognizing the bruise time and bruise type. 

Methods 
Nonbruis

ed 

Bruising time Bruising type 

Bruise 1 

h 

Bruise 12 

h 

Bruise 24 

h 

Compressi

on 

Collisio

n 

PCA-

ELM 
100% 100% 82.14% 89.47% 94.29% 97.62% 

UVE-

ELM 
100% 100% 85.71% 84.21% 91.43% 97.62% 

PCA-

SVM 
95.23% 100% 78.57% 89.47% 94.29% 97.62% 

UVE-

SVM 
100% 96.67% 78.57% 89.47% 91.43% 97.62% 

STOA-

GA-SVM 
100% 100% 85.71% 89.47% 94.29% 100% 
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Figure 1. Processing methods for spectral data. 
  



 

 

 

(a) Nonbruised pear (b) Pears after collision 

bruise 

(c) Pears peeled after 3 

days of collision bruise 

 
(d) Nonbruised pear (e) Pears after 

compression bruise 

(f) Pears peeled after 3 

days of compression 

bruise 

Figure 2. Pears samples: nonbruised (a, d), immediately post-bruise (b, e), and peeled after 3 

days of bruising (c, f). 
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Figure 3. Data acquisition system and hyperspectral 3D spectral image. 
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Figure 4. STOA-GA-SVM hybrid algorithm flowchart. 

 

 

 



 

 

 
Figure 5. Comparison of the average spectra measured for pear samples in each sample group 

in the experiment. 

 

 

 

 

 
Figure 6. Score plots of the first three principal components of the PCA. 

 

 



 

 

 
Figure 7. Stability distribution of variables used for prediction by UVE. 

 

 
  



 

 

 

(a) Results of the PCA-ELM               (b) Results of the UVE-ELM 

 

(c) Results of the PCA-SVM               (d) Results of the UVE-SVM 

 
(e) Results of the STOA-GA-SVM 

Figure 8. Visualized confusion matrix for five different modeling methods. 


