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Abstract: In the pursuit of intelligent and efficient grape picking, rapid and precise detection of grape 
locations serves as the fundamental cornerstone. However, amidst the natural environment, grape 
detection encounters various interference factors, such as fluctuating light intensity, grape leaf 
obstructions, and grape overlap, all of which can undermine detection accuracy. To address these 
challenges, this study proposes a grape detection method leveraging an enhanced YOLOv8 network, 
wherein the conventional CIoU is replaced with Wise-IoU (WIoU) to augment network precision. 
Additionally, an Efficient Multi-scale Attention module (EMA) is introduced to heighten the 
network's focus on grapes. To expedite detection, the original network backbone is substituted with 
the CloFormer_xxs network. The collected grape images undergo preprocessing to ensure image 
quality, forming the basis of the dataset. Furthermore, the dataset is augmented using Disadvantages-
Enhance (DE), a novel data enhancement mode, thereby enhancing the robustness and generalization 
of network. The comprehensive comparison and ablation experiments are conducted to demonstrate 
the advantageous effects of the proposed modules on the network. Subsequently, the improved 
network's superiority in grape detection is validated through comparative analyses with other 
networks, showcasing superior accuracy and faster detection speeds. The network achieves a 
remarkable accuracy of 92.1%, average accuracy of 94.7%, with preprocessing and post-processing 
times of 15ms and 0.8ms, respectively. Consequently, the enhanced network presented in this study 
offers a viable solution for facilitating intelligent and efficient grape picking operations. 
 
Key words: Automatic grape picking; Disadvantages-Enhance; EMA; Grape detection; Smart 
agriculture; YOLOv8.  
 
 
 
INTRODUCTION 
China became the world's largest producer of grapes as early as 2010 and has continued to maintain 
its leading position (Tian et al., 2017). As woody vines belonging to the Vitaceae family, grapes 
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require artificial supports to maintain their vines. Currently, manual harvesting remains the primary 
method for grape harvesting. With the expansion of grape planting scale, the continuously rising labor 
costs have become the main constraint on grape production. Therefore, machine-based grape 
harvesting automation has become a crucial necessity (Sheridan et al., 2016; Wouter et al., 2014; Van 
et al., 2010). Accurate and rapid grape location recognition is an indispensable prerequisite for 
achieving automated grape harvesting. However, during the harvest season, grapes are embedded in 
interwoven branches and swollen grape leaves, making visual detection of grapes complex. 
Since the 1970s, more and more scholars have devoted themselves to the research of object detection 
technology and achieved some results (Abdullahi et al., 2017) , which greatly promoted the 
development of agriculture, transportation industry and human-computer interaction (Ji et al., 2023; 
Wang et al., 2018).With the development of computer technology and image processing, target 
detection technology for fruit detection has mainly undergone two stages: traditional machine 
learning-based and deep learning-based approaches. 
Traditional machine learning-based object detection techniques were extensively utilized in the early 
stages of fruit detection, relying on feature extraction and pattern recognition. Commonly used 
features encompass color, shape, and texture features (Zhuang et al., 2018). Rabby et al. (Rabby et 
al., 2018) extracted shape and color features of oranges and apples, enhancing the edge detection 
algorithm for their detection. In 2016, Pothen et al. (Pothen et al., 2016) proposed a fruit recognition 
method incorporating an improved directional gradient histogram and texture descriptors, employing 
a random forest classifier for classification, achieving accuracy rates of 82% and 80% in grape and 
apple detection, respectively. Zeeshan et al. (Zeeshan et al., 2020) created a feature space by 
extracting color, shape, and texture features, combining them with a support vector classifier to 
achieve fruit classification with a detection accuracy of 87.06%. Patel et al.  (Patel et al., 2011) 
calculated brightness, color, direction, edge features, performed weighted integration and 
segmentation operations, resulting in binary images and extracted regional fruit positions with an 
accuracy rate of 90%. 
In 2019, Castro et al. (Castro et al., 2019) evaluated various machine learning algorithms combined 
with three color spaces (RGB, HSV, and Lab), demonstrating that the SVM classifier in the Lab color 
space achieved the highest accuracy at 93.02%. Despite improving detection accuracy, these methods 
often suffer from slow network detection speed and poor robustness in recognizing fruits in complex 
scenes. In 2019, Fu et al. (Fu et al., 2019) tested bananas in a natural environment based on texture 
and color features, achieving an average detection time of only 1.325 seconds. However, the method's 
accuracy was low, unsuitable for real detection in natural environments. Lu et al. (Lu et al., 2015) 
proposed a method combining color and contour information to identify citrus fruits, successfully 
identifying them in orchards. Nevertheless, this method exhibited numerous missed and incorrect 
detections in fruit recognition under complex backgrounds. 
The techniques described previously rely on extracting color, shape, and texture features, which 
restrict their ability to identify fruits with pronounced appearance differences and pose limitations on 
recognizing specific fruits. During detection, these methods encounter challenges such as 
illumination variations, occlusions, overlaps, among others, complicating feature extraction and 
reducing accuracy. In contrast, recent years have seen a shift towards deep learning-based object 
detection techniques, which have increasingly supplanted traditional machine learning approaches 
for fruit detection. Deep learning-based fruit detection networks are categorized into two types: those 
that are based on candidate regions and those that utilize regression for target detection (Hubel et al., 
1962). These advanced methods offer enhanced precision and adaptability in identifying a broader 
range of fruits under varying conditions. 
Popular target detection networks based on candidate regions include R-CNN, Fast R-CNN, Faster 
R-CNN, Mask-RCNN, among others. These networks operate in two stages: first, numerous 
candidate boxes are generated through convolution operations on feature maps, followed by 
classification and position regression of these candidate boxes. Consequently, they are referred to as 
two-stage networks. Girshick et al. (Girshick et al., 2014) introduced R-CNN, an object detection 



algorithm relying on candidate boxes, in 2014. However, this approach involves extracting features 
from each object candidate box in every image, leading to substantial computational space 
requirements during training. 
Subsequently, Girshick et al. (Girshick et al., 2015) enhanced R-CNN, presenting Fast R-CNN in 
2015, utilizing the VGG16 neural network. This modification reduced the original 2000 CNN 
operations to just one, accelerating training by nine times and test speed by 213 times. Ren et al. (Ren 
et al., 2015) further refined this concept with Faster R-CNN, substituting an RPN network for the SS 
algorithm to generate candidate boxes, thereby shortening both training and detection times while 
enhancing accuracy. 
He et al. (He et al., 2017) introduced the Mask-RCNN network, leveraging the ROI Align and bilinear 
interpolation methods to improve network accuracy by obtaining pixel values of floating-point 
coordinates. Le et al. (Le et al., 2019) applied the improved Mask R-CNN network to banana 
detection, achieving an average accuracy of 92.5%, which increased to 93.8% with dataset expansion. 
Gao et al. (Gao et al., 2020) proposed a multi-class apple detection method for dense leaf fruit trees 
based on a fast regional convolutional neural network, addressing issues of branch and leaf occlusion, 
thereby enhancing network detection accuracy in complex environments. While these methods boast 
high accuracy, their two-stage network structure contributes to slower detection speeds. 
The deep learning-based single-stage object detection networks, such as SSD and YOLO series 
algorithms, have gained prominence for their efficiency and reduced computation. In 2015, Redmon 
et al. (Redmon et al., 2016) introduced YOLOv1, treating object detection as a regression problem 
and utilizing a single neural network to output bounding boxes directly. Wei et al. (Wei et al., 2016) 
proposed SSD in 2016, employing small convolution checks and a 3×3 convolution kernel to predict 
category scores and box offsets, thereby reducing detection time. Subsequent versions like YOLOv2 
by Redmon (Redmon et al., 2017) and YOLOv3 by Redmon et al. (Redmon et al., 2018) improved 
backbone networks and introduced mechanisms like anchor frames and feature pyramid networks to 
enhance performance. In 2019, Tian et al. (Tian et al., 2019) introduced an improved YOLOv3-dense 
model for detecting apples across different growth stages, demonstrating enhanced performance 
under occlusion conditions. Bochkovskiy et al. (Bochkovskiy et al., 2020) proposed YOLOv4 in 
2020, incorporating data enhancement and multi-scale fusion to improve network learning ability. 
Jocher et al. (Jocher et al., 2020) proposed YOLOv5 in the same year, utilizing structures like Focus 
and CSP to reduce parameter computation and memory usage. 
In subsequent years, improvements continued with the introduction of YOLOv7 by Wang et al. 
(Wang et al., 2023), focusing on model reparameterization and auxiliary head training methods to 
increase accuracy. Ji et al. (Ji et al., 2021) proposed an apple detection method based on Shufflenetv2-
YOLOX, achieving improved performance in detection speed and AP value. In 2023, Jocher et al. 
proposed YOLOv8, which further enhanced object detection by refining network architecture. 
While object detection techniques have made some progress, deep learning based fruit detection 
models still face challenges in grape detection in natural environments. In the natural environment, 
grape fruit bodies are densely distributed in clusters, the fruit bodies are compact and adhering, and 
the branches and leaves are occluded or mutually occluded. As a result, there is a large number of 
false detections, missed detections, and re-detections in grape detection in natural environments, 
which poses certain difficulties and challenges for accurate grape fruit detection. To address these 
issues, an improved YOLOv8 grape detection model is proposed with the aim of improving accuracy 
and speed in grape detection scenarios. The following is a summary of the major contributions of this 
study: 

1. To enhance the network's robustness and generalization, we propose a novel data 
augmentation method, DE, aimed at diversifying the dataset. 
2. In order to enhance detection accuracy, a new architecture for grape detection in the 
complex natural environment is provided based on YOLOv8-GRAPE network, which use 
WIoU avoiding false detections, missed detections, and re-detections. Meanwhile, the EMA 
module is integrated to heighten the network's focus on grapes within intricate environments. 



3. In pursuit of improved detection speed, we integrate the CloFormer_xxs network to 
substitute the traditional backbone network within the YOLOv8 model. 

The paper proceeds as follows: In the second section, we detail the image acquisition, processing, 
and data augmentation processes, along with the introduction of a novel data augmentation method. 
Moving to the third section, we present both the conventional YOLOv8 network and the modified 
version, elucidating the framework of each network structure. The fourth section entails training the 
network using the dataset. Additionally, to validate the superiority of our enhanced model, we train 
other networks with the same dataset, with results outlined in the fifth section. In the seventh section, 
we conduct a comparative experiment to further validate the superiority of our model, culminating in 
the presentation of final conclusions. 
 
PERSIMMON DAYASET 
 
Image collection 
First, we collected images of grapes in their natural environment in a vineyard, and then filtered the 
images with low pixels and no grapes. The following is a detailed description of the data collection: 
l Location and collection equipment: We used an Intel RealSense d455 camera to collect images 

of grapes in the natural environment at Dawei Farmer's Vineyard in Baohe District, Hefei City, 
Anhui Province. The data acquisition device is shown in Figure 1. 
 

 

 
 
Figure 1. Data acquisition device 
 
 
l Collection environment: We collected data sets of grapes under the conditions of backlight, 

direction light, strong light intensity and weak light intensity, respectively. At the same time, we 
also collected images of grapes under leaf occlusion, non-occlusion, overlap between grapes, and 
non-overlap between grapes to ensure the diversity of the dataset and prevent the network from 
overfitting.  

l Image processing: Firstly, low-pixel and low-quality images without grapes in the original image 
were filtered, and 500 high-quality images were obtained. The processed images were shown in 
Figure 2, and then Labelimg was used to manually label the obtained high-quality images and 
name grape. 

 
 

 



 
Figure 2. (a) Backlight; (b) Phototropism; (c) Light intensity; (d) Low light; (e) occlusion; (f) No 
occlusion; (g) Overlap; (h) No overlap 
 
 
Dataset enchancement 
To prevent overfitting in the training process due to too few datasets and to improve the generalization 
ability of the model, 500 high-quality images were augmented. We propose a novel data augmentation 
method, DE, to improve the image fidelity, whose flowchart is shown in Figure 3. 

 
 
Figure 3. Schematic diagram of the DE 
 
Specifically, the input image is first transformed into a grayscale image to reduce the space occupied 
in the process of enhancement, then significant features and non-significant features are extracted 
through threshold segmentation, significant features are retained and non-significant features are 
sharpened using convolution check for image sharpening, and finally significant features and non-
significant features are merged. We call this data enhancement method Disadvantages-Enhance. In 
addition, we also use five traditional methods, namely flipping, rotating 90°, color dithering, color 
enhancement and sharpening to enhance the image. Specifically, we flip the image left and right, 
rotate 90° clockwise, and set different random factor value intervals to adjust the image saturation, 
brightness, contrast, and sharpness to achieve the effect of color dithering. An image containing only 
transparency information is converted to an image containing both gray and transparency for color 
enhancement, and regions in the image with small relative differences in pixel values are reduced and 
regions with large relative differences in pixel values are increased for image sharpening. With data 
augmentation, the dataset was increased to 1500 images. Then, based on the Pycharm platform, the 
dataset partitioning code is used to randomly split the dataset, with 80% as training set, 10% as 
validation set, and 10% as test set. The flowchart of data augmentation is shown in Figure 4. 
 

 
Figure 4. Schematic diagram of the data augmentation. 



 
 
NETWORK MODEL 
 
Improved network 
Based on the traditional YOLOv8 network, we make several improvements that improve the 
performance of the network during grape detection and shorten the training and detection time. The 
structure of the improved network is shown in Figure 5. 

 
 
Figure 5. The structure diagram of improved network 
 
Optimizing the loss function 
Each sample is passed through the model and a prediction value is obtained.  The difference between 
the predicted value and the true value is called the loss. The smaller the loss, the better the accuracy 
of the model. A loss function is essentially a function of the type used to compute the difference 
between the predicted value and the true value. YOLOv8 has only two branches at the output of the 
network: The classification branch uses VFL, and the regression branch uses CIoU and DFL 
(distributed focal loss). CIoU is a loss calculation function for boundary prediction. It first receives 
the predicted value from the forward propagation of the model, then computes the difference between 
the predicted value and the true value, and finally provides data for the backward propagation of the 
model. The formula for the calculation can be stated as follows: 
 

  (1) 
 

  (2) 

Where b is the central point of the prediction box, bgt is the central point of the real box, d is the euler 
distance between the two central points, and IoU is the intersection ratio, α is the weight function and 
ν measures the consistency of the aspect ratio. The formula for calculating α and ν is as follows: 
 

( )2 2/gt
CIoULoss R d b b c an= + +，

1R IoU= -



  (3) 
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Where, w is the width of the prediction box, h is the height of the prediction box, wgt is the width of 
the real box, and hgt is the height of the real box. 
Based on DIoU, CIoU introduces aspect ratio consideration to address the problem that DIoU fails to 
distinguish certain cases in Bounding Box Regression. However, the aspect ratio difference reflected 
by ν in CIoU formula is not the real difference between the width and height respectively and their 
confidence, so sometimes it will hinder the effective optimization similarity of the model. The 
traditional loss function only considers the overlap of the true and predicted boxes, and does not 
consider the region between the two, which may cause the network to be biased in evaluating the 
results. During dataset production, the quality of image annotations is not uniform due to many 
factors, but traditional loss functions increase the penalty for low-quality samples, which reduces the 
generalization ability of the model. Therefore, we optimize the traditional YOLOv8 network to use 
WIoU v2 (Tong et al., 2023) instead of CIoU in traditional YOLOv8. WIoU is a dynamic rather than 
monotonic FM loss function that combines Wise with an IO-based loss. The loss function uses 
outliers instead of IoU to evaluate sample quality and has an intelligent gradient gain allocation 
strategy. This strategy not only reduces the competitiveness of high-quality samples, but also reduces 
the penalty for low-quality samples, so that the loss function can focus on normal-quality samples 
and improve the accuracy and generalization ability of the network. Effective learning under limited 
conditions is key for real-time detection, and WIoU improves the overall performance of the network 
by balancing learning on low-quality samples with high-quality samples. The calculation formula of 
WIoU v2 can be expressed as: 
 

  (5) 

  (6) 

Where RWIoU is the penalty term of WIoU_loss, and is  the coordinate of the upper-left corner of 
the anchor box, xgt and ygt is the coordinate of the upper-left corner of the target box, Wg and Hg 
represents the width and height of the minimum bounding box, LWIoUv2 is the WIoU_loss v2 function, 
LIoU represents the IoU loss function, L* 

IoU represents the monotonic focusing coefficient of LIoU, and 
LIoU represents the mean of LIoU. 
 
Introduction of EMA 
High-precision grape detection networks are an important guarantee for automatic grape picking. In 
real-time monitoring of grapes in a natural environment, the collected grape detection images contain 
not only grape information but also a large amount of interference information. Therefore, being able 
to focus on important feature information and suppress other useless information is crucial for grape 
detection networks in the natural state. Attention mechanisms have flexible structural properties that 
can be easily ported to network architectures, while enhancing learning of critical parts. Motivated 
by this, we introduce an attention mechanism in the traditional YOLOv8 model to increase the 
attention of the network on key parts. In principle, there are three main types of attention mechanisms: 
spatial attention mechanism, channel attention mechanism, and hybrid spatial and channel attention 
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mechanism. Most attention mechanisms use channel dimensionality reduction to model cross-channel 
relations, which may introduce some side effects during feature extraction. Therefore, we introduce 
an efficient multi-scale attention module (Ouyang et al., 2023)(EMA), which adopts a general 
approach to reshape part of the channel into batch dimensions and divide the channel dimensions into 
multiple sub-features so that the spatial semantic features are evenly distributed within each feature 
group, thus avoiding channel dimensionality reduction by general convolution. The above approach 
not only preserves the information on each channel, but also reduces the computational overhead. 
The structure of EMA is shown in Figure 6. 

 
Figure 6. The structure diagram of EMA. 
 
From Figure 6, we can see that EMA adopts three paths for image feature extraction, the first two 
paths are named as 1×1 branches, and the third path is named as 3×3 branches. On two 1×1 branches, 
there are two global mean pool layers that encode channels in the space in both directions, 
respectively. On the 3×3 branch, there is a 3×3 kernel for extracting multi-scale features. Two 1×1 
branches are connected in parallel with a 3×3 branch. This structure can aggregate multi-scale spatial 
structure information while achieving fast response to the entire structure for better performance. 
 
Lightweight treatment 
Fast and accurate grape detection networks are essential guarantees for real-time grape detection in 
natural environments.  Traditional object detection networks tend to be computationally intensive and 
have long detection times, which will have a huge impact on real-time grape detection. Based on the 
traditional YOLOv8 model, we replace the backbone part of the network with CloFormer_xxs 
network (Fan et al., 2023) to reduce the computation and detection time of the network. 
CloFormer_xxs is a lightweight and efficient visual backbone network whose structure is shown in 
Figure 7. 
 
 



 
Figure 7. The structure diagram of CloFormer_xxs. 
 
 
From Figure 7, we can see that the CloFormer_xxs network consists of a convolutional system Conv 
stem and four stages, each containing a Clo block module and a ConvFFN module. Specifically, the 
input image is fed into the convolutional system to obtain image features, indicating that the system 
consists of four convolution steps of 2, 2, 1 and 1 in sequence. The obtained image features are then 
passed through four Clo blocks and ConvFFN modules to extract hierarchical features, where the Clo 
block module consists of a global branch and a local branch. Global branches are used to extract low-
frequency global information, effectively reducing the number of floating-point operations required 
by the attention mechanism. The local branch is used to extract high-frequency global information 
and AttnConv is used to process high-frequency local information to achieve fusion of shared and 
context-aware weights for better processing of high-frequency local information. The ConvFFN 
module can aggregate local information by incorporating it into the FFN. There are two types of 
ConvFFN modules used in the CloFormer_xxs network, the first one is the intra-phase ConvFFN, 
which directly uses skip joins, and the other one is the inter-phase ConvFFN, which is mainly used 
for downsampling and augmentation operations. 
 
Training operation 
To some extent, the training environment will have some impact on the training duration and results. 
The experimental environment is divided into hardware environment and software environment. The 
specific details of the training environment are given in Table 1. 
 
Table 1. Training environment. 

Environment Name Configuration 

Hardware 
environment 

CPU 
Intel (R) Core
（ TM ） i9- 
12900K 

GPU 
NVIDIA 
GeForce RTX 
3090 

ROM 24GB 

RAM 32GB 
Software  
environment 

System Window 10 
CUDA 12.1 

Pytorch 2.1.0 

Python 3.8.5 
 
 



TRAINING PROCESS AND RESULTS 
Precision (P), Recall(R) and mean Average Precision 50 (mAP50) were used to describe the 
performance of the model. Where P represents the proportion of positive samples that the model can 
correctly predict. R represents the proportion of all true positive samples that the model can find. 
mAP50 represents the average accuracy across multiple classes at an IoU threshold of 0.5. 
We import the above data set into the optimized model for training and save the training results in 
"train". The hyperparameters during training are as follows: imgsz is 640 pixels ×640 pixels, batch is 
16, epoch is 300, workers is 0, device is 0, patience is 50, learning rate is 0.01, etc. 
We import the test set into the trained model, make the model detect the images in the test set and 
save the detection results in the file "detect". The results are shown in Table 2. 
 
 
Table 2. Indicators. 

 P R mAP50 

Training set 0.947 0.820 0.921 
Validation 
set 0.926 0.914 0.937 

Test set 0.941 0.879 0.916 
 
 
EXPERIMENT 
 
Comparative experiment based on WIoU 
Based on the fact that there are three versions of WIoU, namely WIoU v1, WIoU v2, and WIoU v3, 
we conduct a comparison experiment on the three versions of WIoU to obtain the optimal loss that is 
suitable for grape detection. Based on the traditional YOLOv8 model, we replaced each of the three 
versions of WIoU in the traditional model with CIoU, and then trained the model using the 
aforementioned datasets. The training results are shown in Table 3. The replacement models are 
named YOLOv8-WIoU v1, YOLOv8-WIoU v2, and YOLOv8-WIoU v3. As can be seen from Table 
3, both P and mAP50 of YOLOv8-WIoU v2 are higher than those of the other two models, thus 
YOLOv8-WIoU v2 has the best detection. 
 
Table 3. Training results of YOLOv8-WIoU v1, YOLOv8-WIoU v2, YOLOv8-WIoU v3. 

 P mAP50 
YOLOv8- WIoU 
v1 0.908 0.913 

YOLOv8- WIoU 
v2 0.933 0.915 

YOLOv8- WIoU 
v3 0.916 0.902 

 
 
We then further analyze the training results. We compare the various losses of the models in Table 3, 
and the results are shown in Figure 15. Box_loss is used to calculate the gap between the predicted 
boundary box and the real boundary box, DFL_loss is used to represent the gap between the distance 
field predicted by the model and the real distance field, and Cls_loss is used to calculate the gap 
between the predicted category and the real category. It can be seen from the Figure 8, that all kinds 
of losses of YOLOv8-WIoU v2 are lower than those of the other two versions, indicating that this 
model can accurately locate the position of grapes and correctly identify grapes, and this model can 
also accurately describe the shape of the boundary box. 



 

 
Figure 8. Box_loss, DFL_loss, Cls_loss for each version of WIoU. 
 
To further verify the superiority of WIoU v2, we compare YOLOv8-WIoU v2 with a network that 
replaces the other loss functions. Based on the traditional YOLOv8 model, SIoU, DIoU, MPDIoU, 
EIoU, and GIoU are replaced by CIoU, and the replaced models are named YOLOv8-SIoU, 
YOLOv8-DIoU, YOLOv8-MPdiou, YOLOv8-IoU, and YOLOv8-GIoU, respectively. We still train 
them with the above dataset, and the training results are shown in Table 4. 
 
 
Table 4. Training metrics for networks with various loss functions are introduced 

 P mAP50 
YOLOv8-WIoU 
v2 0.933 0.915 

YOLOv8-CIoU 0.828 0.827 
YOLOv8- DIoU 0.886 0.900 
YOLOv8- 
MPDIoU 0.903 0.904 

YOLOv8- EIoU 0.880 0.905 
YOLOv8- GIoU 0.908 0.912 
YOLOv8- SIoU 0.858 0.907 

 
From Table 4, we can see that YOLOv8-WIoU v2 achieves the best results and both P and mAP50 
are higher than the networks with the other introduced loss functions. To verify the effect of the 
network in the instance detection in Table 4, we performed instance detection on the model in the 
above table and the detection effect is shown in Figure 9. 



 
Figure 9. Detection plot of the network with each loss function introduced. 
 
 
From Figure 9, we can see that YOLOv8-WIoUv2 does not have re-detections, false detections, and 
missed detections in the natural environment of grape detection. In contrast, the other models have 
more re-detections, false detections, and missed detections, which proves that reducing the penalty 
of low-quality samples during network training helps improve the accuracy of the network. It is 
further shown that WIoU v2 has certain advantages in the grape detection process in natural 
environments. Where the yellow arrows point, there are missed checks, error checks, and re-checks. 
 
Comparative experiment based on EMA 
In the complex environment of grape growing, the attention of the network to the grapes is crucial. 
In order to increase the network's attention to grapes, we introduce the EMA module into the YOLOv8 
model, which uses a multi-scale parallel subnetwork to establish short and long dependencies, and 
uses the general method to reshape part of the channel batch dimension and divide the channel 
dimension into multiple sub-features. Spatial semantic features are uniformly distributed within each 
feature group, thus avoiding information loss and allowing the network to focus more on the features 
of the grape itself. To verify the superiority of EMA, we embed EMA, CBAM, GAM, SA, SE, ECA, 
AIFI and CA attention mechanisms based on the traditional YOLOv8 model. They are named 
YOLOv8-EMA, YOLOv8-CBAM, YOLOv8-GAM, YOLOv8-SA, YOLOv8-SE, YOLOv8-ECA, 
YOLOv8-AIFI and YOLOv8-CA, respectively. The same datasets are used to train the models 
described above, and the training results are shown in Table 5. 
 
 
Table 5. Training metrics of various attention mechanism networks are introduced 

 P R mAP 
YOLOv8-
EMA 0.905 0.778 0.868 

YOLOv8- 
CBAM 0.854 0.756 0.836 

YOLOv8-
GAM 0.787 0.774 0.813 

YOLOv8-
SA 0.902 0.715 0.816 



YOLOv8-
SE 0.859 0.756 0.809 

YOLOv8- 
ECA  0.875 0.775 0.863 

YOLOv8-
AIFI 0.898 0.733 0.836 

YOLOv8- 
CA  0.875 0.762 0.836 

 
As can be seen from the above table, networks with EMA have some performance benefits, with 
higher P, R, and mAP50 than networks with other attention mechanisms. To better demonstrate the 
advantage of EMA in making the network pay more attention to grape compared to other attention 
mechanisms, we performed a heatmap visualization of the seventh layer of the above model using 
Grad-CAM separately, and the results are shown in Figure 10. From the Figure 10, we can see that 
the introduction of EMA enables the network to reduce the focus on non-critical parts and increase 
the focus on grape. It is worth noting that while the network focuses more on the grape, its confidence 
also improves. 
 
 

 
Figure 10. Visual heat map comparison 
 
 
Comparative experiment based on CloFormer_xxs 
To evaluate the superiority of CloFormer_xxs network in terms of detection speed, 100, 150, 200, 
250, 300, 350, 400, 450 and 500 images were detected by the conventional YOLOv8 model and the 
model introduced with CloFormer_xxs network, respectively. We will name the model that 
introduces the CloFormer_xxs network YOLOv8-CloFormer_xxs. The test results are shown in 
Figure 11. The results show that the YOLOv8-CloFormer_xxs model outperforms the traditional 
models in terms of image pre-processing and post-processing during case detection. 



 
Figure 11. Comparison of image pre-processing and post-processing  
 
 
Ablation experiment 
To verify the effect of the traditional YOLOv8 model with EMA, WIoU v2 and CloFormer_xxs 
networks, we conducted ablation experiments. We will name the network that introduces EMA and 
WIoU v2 simultaneously YOLOv8-WIoU v2+EMA, and name the network that introduces EMA and 
CloFormer_xxs simultaneously YOLOv8-EMA+CloFormer_xxs, The network that introduces both 
WIoU v2 and CloFormer_xxs is named Yolov8-Wiou v2+CloFormer_xxs, and the network that 
introduces both WIoU v2, EMA, and CloFormer_xxs is named YOLOv8-GRAPE. The training 
results are shown in Table 6. 
 
Table 6. Ablation Experiment 

Component Choice 

WIoU v2 √ √  √ √    

EMA √ √ √   √   

Cloformer_x
xs √  √ √   √  

P 0.947 0.921 0.897 0.805 0.933 0.905 0.880 0.828 

R 0.820 0.703 0.762 0.767 0.850 0.778 0.769 0.782 

mAP50 0.921 0.826 0.836 0.831 0.915 0.868 0.860 0.827 

 
 
Through ablation experiments, it is proved that the optimal detection effect can be obtained when 
WIoU v2, EMA, and CloFormer_xxs are introduced into the network at the same time. 
Comparative experiments with other networks 
To further verify that the improved network has some superiority in grape detection in natural 
environments. We train YOLOv8-GRAPE with other detection networks using the above dataset, and 
the comparison results are shown in Table 7. As can be seen from the Table 7. , YOLOv8-GRAPE 
has the best performance, which again proves that the improved model proposed in this paper has 
better detection accuracy and speed in grape detection in natural environments. 
 



 
 
 
Table 7. Comparison of various networks 

 P mAP50 Pre-
pocession/(ms) 

Post-
pocession/(ms) 

YOLOv8-
GRAPE 

0.947 0.921 1.5 0.8 

YOLOv8 0.828 0.827 2.4 1.9 
YOLOv8- CBAM 0.854 0.836 2.2 2.5 
YOLOv8-SA 0.902 0.816 2.5 2.1 
YOLOv8- EIoU 0.880 0.905 1.9 1.7 
YOLOv8- SIoU 0.858 0.907 2.2 1.7 
YOLOv9 0.897 0.905 2.6 2.3 
YOLOv7 0.915 0.899 2.8 2.5 
YOLOv5 0.884 0.902 3.2 2.9 
YOLO-v3 0.916 0.890 2.7 3.4 

 
 
CASE DEDECTION 
To show the detection effect of the improved network in natural environments, we split the above test 
set according to the conditions of backlight, toward light, bright, dark, occlusion, no occlusion, 
overlap and no overlap. Among them, there are 64 images with backlight, 56 with toward light, 72 
with bright, and 75 with dark. There are 77 images with occlusion, 61 images with no occlusion, 83 
images with overlap, and 73 images without no overlap. The above images are fed into the network 
for detection, where the ratio of the number of successful identifications to the total number of 
samples is the identification rate, and the results are shown in Figure 12. As can be seen in Figure 12, 
the recognition rate of the network for grapes can reach more than 92% under the above conditions, 
and the specific grape detection results under different conditions are shown in Figure 13. 
 
 

 
 
Figure 12. Recognition rates of grapes under various conditions 
 
 
 
 
 



 
Figure 13. (a) Backlight; (b) Phototropism; (c) Light intensity; (d) Low light; (e) occlusion; (f) No 
occlusion; (g) Overlap; (h) No overlap; 
 
 
From Figure 13, we can see that the improved network does not suffer from false detections, missed 
detections and re-detections in the above environments, and the detection accuracy is high, which 
proves that the network still performs well in complex environments. 
 
 
CONCLUSIONS 
This paper presents a method for grape detection in natural environments utilizing an improved 
YOLOv8 network. Leveraging DE and five conventional data augmentation techniques, we augment 
the original dataset to bolster network robustness and mitigate overfitting. Integration of WIoU 
enhances detection accuracy within the YOLOv8 framework, while the introduction of EMA focuses 
the network's attention on grapes. Furthermore, we implement lightweight processing and integrate 
the CloFormer_xxs network with the original one to accelerate pre-processing and post-processing 
speeds. 
To assess the impact of the enhanced modules on model performance, we conducted a series of 
experiments. Firstly, regarding network accuracy, we evaluated three versions of WIoU, finding that 
WIoU v2 significantly enhances network performance. Subsequently, comparing WIoU v2 with other 
loss functions, we observed that the YOLOv8-WIoU v2 model surpasses alternatives in terms of 
accuracy and average accuracy, notably improving detection reliability in natural environments. 
In terms of network attention, we explored the EMA module's effectiveness and observed that 
networks incorporating EMA exhibit higher precision, recall, and mAP50 compared to those with 
alternative attention mechanisms. Further, employing Grad-CAM for heatmap visualization, we 
noted that EMA enhances the network's focus on key areas, aiding in grape detection amidst complex 
backgrounds. 
Regarding network lightweight processing, replacing the original backbone network with 
CloFormer_xxs yielded benefits in detection speed. Comparing with the original network, the 
proposed model demonstrated reduced image pre-processing and post-processing times. 
To gauge the collective impact of the modified modules, we conducted ablation experiments, 
revealing that our model outperforms various combinations of individual enhancements. 
Additionally, comparing YOLOv8-GRAPE with other models, including YOLOv3, YOLOv5, 
YOLOv7, traditional YOLOv8, and variants with alternative attention mechanisms or loss functions, 
YOLOv8-GRAPE consistently exhibited superior performance, achieving higher mAP50, accuracy, 
and faster inference and pre-processing times. 
In conclusion, the enhanced network introduced in this paper offers valuable insights for automating 
grape picking and yield prediction in vineyards. While demonstrating improved detection accuracy 
and speed, there is still room for further enhancements in future research. Continued efforts will focus 
on refining the accuracy and speed of grape detection for even greater efficacy in practical 
applications.The effect of this network in detecting complete overlap between grapes is not ideal. 



After the analysis, it was found that, in theory, the performance of the network can be further 
improved if the stereo fruits are collected during the data collection and the dataset containing the 
stereo information is imported into the network for training. This addresses the problem that grape 
detection is not ideal when the network completely overlaps between grapes. 
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