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Abstract Recent studies suggest that plant disease identification via machine learning approach is 
vital for preventing the spread of diseases. Identifying multiple diseases simultaneous on a single leaf 
is one of the most irritating issues in agricultural production. However, the existing approaches are 
difficult to meet the requirements of production practice in accuracy or interpretability. Here, we 
present residual attention based multi-label learning framework (RAMDI), a method for predicting 
apple leaf diseases in natural environment. Built upon an attention based multi-label learning 
framework, the channel and spatial attention mechanisms are investigated and embedded in residual 
network for multi-label disease prediction, which takes advantage of channel-wise and spatial-wise 
attention weights. Experimental results indicate that the RAMDI achieves 0.976 accuracy, 0.986 F-
score, and 0.979 mAPs, outperforms the existing state-of-the-art apple leaf disease identification 
models. RAMDI not only predicts multi-disease on a single leaf simultaneously, but also reveals the 
interpretability among positive predictions that contribute most to identify the key features that are 
significant for the leaf diseases. This method achieves the following two achievements. Firstly, it 
provides a solution for detecting multiple diseases on a single leaf. Secondly, this approach gains an 
interpretable understanding for apple leaf disease identification. 

Key words: fruits; attention mechanism; machine learning; one-hot encoding. 

 

1. Introduction 
The United States Department of Agriculture (USDA) released a report that the global apple 

production is estimated to reach 81.8 million tons in 2021, a rise of 1.6% year-on-year (Alice, 2021). 
As one of the most valuable and popular fruits around the world, apple is processed into various foods 
or condiments. However, apple production is struggling with various disease intrusions, which 
restricts the improvement of apple yield and quality. Traditional manual identifying diseases is labor-
intensive and time-consuming. Moreover, multiple diseases occurring on a single leaf concurrently 
creates a great challenge for precise identification (Zhou et al., 2021). To mitigate the strong 
dependence on human labor, it is significant to replace manual identification with automatic detection 
on behalf of the development of computational approaches. 

Generally, symptoms of fruit diseases appear on the leaves first, which makes the leaf disease 
identification particularly important. Timely identifying disease on leaves prevents fruits from being 
invaded. To date, many silico prediction methods have been proposed to identify apple leaf diseases, 
mainly include conventional machine learning methods and various variants of deep learning 
approaches. The conventional machine learning approaches, such as image processing methods 
(Ayyub, et al., 2019), support vector machine (Chakraborty et al., 2021), ACS-LBP (Li et al., 2016), 
2DSLDR (Shi et al., 2017), hybrid neural clustering (James, et al., 2021), HIoT (Pandiyan et al., 2020) 
and so on. These methods have achieved satisfactory results in apple leaf disease identification tasks. 
In addition, as the deep learning architectures achieve unprecedented performances in massive data 
processing, numerous of apple leaf disease identification models are released in recent years. Such as 
FCNN-LDA (Agarwal, et al., 2019), leaf spot attention network (Yu, et al., 2020), focus loss function 
method (Zhong et al., 2020), RegNet (Li et al., 2022), MEAN-SSD (Sun et al., 2021) and CA-ENet 
(Wang et al., 2021). Together, these works greatly advanced our understanding of the apple leaf 
disease identification in different species under various conditions. However, the existing methods 
suffered from the following limitations. 



Firstly, most of the existing studies only focus on the single leaf with single disease, mainly 
including Alternaria blotch, brown spots, gray spot, mosaic and rust, but failed to support multiple 
diseases occurring on single leaf simultaneously by an integrated predictive model, and the study of 
the interplay between different diseases is limited. Ayyub et al. (2019) proposed an image processing-
based apple disease identification approach. The traditional image processing methods such as image 
segmentation, feature extraction (color, texture and shape), feature combination and the support 
vector machine were employed to identify apple diseases. James et al. (2021) developed a Hybrid 
Neural Clustering (HNC) classifier by using the K-means to cluster the vector points, and fed them 
into a feed forward back propagation neural network to classify various apple fruit diseases. Pandiyan 
et al. (2020) designed a Heterogeneous Internet of things procedural (HIoT) system to point out leaf 
disease in an efficient manner. The IoT was identified as a repetitive and persistent space to find the 
impact gesture in leaf image, and it was used for real-time resembling apple leaf diseases. Li et al. 
(2022) presented a new lightweight convolutional neural network RegNet to identify 5 apple leaf 
diseases (rust, scab, ring rot, panonychus ulmi, and healthy) with a high accuracy. When given many 
multi-label disease instances, the independent-based predictions are likely to make a substantial 
proportion of false-positive or false-negative results in practice, therefore it should be considered with 
extra caution. One apple leaf disease may be accompanied by other diseases, such as scab and frog 
eye leaf spot, rust and frog eye leaf spot, etc. The highly reliable disease identification model should 
consider the coexistence of multiple diseases and their interdependence. 

Secondly, most of the existing works rely on the public datasets or collecting data from the Internet, 
failing to fully take into account of the farmland environmental factors such as climate, humidity, 
temperature and illuminance, etc. Chakraborty, et al. (2021) and Sun et al. (2021) collected an apple 
leaf disease dataset under the experimental environment with simple background. Yu, et al. (2020) 
used the dataset with similar background of apple leaf disease. Zhong et al. (2020) adopted AI 
Challenger dataset for training models. Agarwal, et al. (2019) developed the apple leaf diseases 
identification method using PlantVillage dataset. However, the trained model is difficult to achieve 
the satisfactory prediction effect in real planting environment. It is crucial to take advantage of the 
data collected from field environment to minimize the potential technological bias whenever such 
datasets are available. 

Lastly, most of the existing works pay more attention to improve identification accuracy but rarely 
provide a clear interpretation of the predictions. Although some works carefully interpret their 
designed architectures (Wang et al., 2021), few existing works give insightful analysis into the 
working process for individual predictions. The occurrence of each disease is often accompanied by 
a variety of factors, taking advances of interpretable attention mechanism, and visualizing them is 
helpful to understand the causal relationship. However, most of the existing models remain significant 
for positive predictions, which are of little help to understand the result forming mechanisms. 

Based on the above reasons, it is a strong motivation to design a unified state-of-the-art deep 
architecture that supports multi-label disease identification using field planting environment dataset 
with integrating multiple technologies. The RAMDI is proposed here, an attention-based multi-label 
learning approach for prediction and interpretation multiple apple leaf diseases. Five categories of 
apple leaf diseases are supported by the presented model, including scab, rust, powdery mildew, frog 
eye leaf spot and healthy. To the best of our knowledge, when a type of disease occurred, it is possible 
accompanied by other categories of diseases at the same time. For example, when it suffered from 
the frog eye leaf spot disease, the scab, or rust is usually also occurred. The attention based multi-
label learning of our method enables accommodation of the shared structure of different diseases 



while fully exploiting their distinctive features. As the features of multi-disease on a single leaf are 
more difficult to handle, multiple attention mechanisms are investigated and integrated to capture the 
features of each disease and interpret every individual prediction.  

2. Materials and methods 

 
2.1 Raw data acquisition and preprocessing 
2.1.1 Raw data acquisition 

The development of an apple leaf disease identification architecture typically requires disease 
profiling data at base resolution for training and testing purposes. Part of the raw images were 
captured using digital cameras or smartphones in the orchards of Qi Xia, Yantai Shandong province, 
China from 2019 to 2021, and part of the instances were taken from many apple cultivars at Cornell 
AgriTech (New York, USA; Geneva, Switzerland) in 2019 to ensure the diversity of training data 
(Thapa et al., 2020), which covered most of the apple cultivars over widespread. A total of 27,883 
raw images were obtained, prioritizing those derived from multi-label diseases and generated under 
different weather conditions in an orchard environment, as shown in Fig.1. After data cleaning, the 
invalid data of disease instances are eliminated, and 21,631 images are curated into one-hot encoding 
labels such as Fig.2, which describes the part of the implementation instances (including 4,624 health 
images (0), 4,831 frog eye images (1), 1,684 powdery mildew images (2), 2,860 rust images (3), 4,826 
scab images (4), 1920 rust and frog eye images (1,3), 886 scab and frog eye images (1,4)).  

 
2.1.2 Data preprocessing 

The raw data were captured by cameras or smartphones with different channels or resolutions. To 
the best of our knowledge, the necessary condition for deep learning models to perform well is with 
massive data of uniform size. Consequently, all of the images were resized to 224×224×3, and the 
augmentation methods including geometrical and intensity transformations such as horizontal 
flipping, rotation, aspect ratio, contrast and brightness and noise were employed to mitigate 
overfitting. All of the instances are split into training set, validation set and test set with percentage 
ratios of 70%, 15% and 15%. The training set is carried out for training models, validation set is used 
for monitoring overfitting and optimizing hyperparameters. The overall performance of the models 
is assessed on test set. 

 
2.2 Related works 

This study presented an attention based multi-label learning deep architecture for multiple apple 
leaf diseases identification, which is closed to 2 branches such as attention mechanism and multi-
label algorithm. A brief review that leads to the proposed methodology is given as follows. 

 
2.2.1 Attention mechanism 

Attention mechanism plays a crucial role in various vision tasks that invests more resources in 
specific target regions and ignores useless information around as humans do, thereby enhancing the 
association of the labels with the image regions. The visual attention mechanisms are briefly 
categorized into spatial attention, branch attention, channel attention and temporal attention according 
to data domain. Spatial attention mechanism, as an adaptive spatial region that solves the problem of 
“where to pay attention”, predicts the most relevant and important spatial positions. SENet (Hu et al., 



2020), Non-Local (Wang et al., 2018), SASA (Ramachandran et al., 2019) and ViT (Dosovitskiy et 
al., 2021) are the most popular spatial attention approaches. Branch attention utilizes a multi-branch 
structure to solve “which to pay attention to” by a dynamic branch selection method, the important 
ones are selected from the different masked branches. Condconv (Yang et al., 2019) is the typical 
representative model using a branch attention method to increase the capability of networks efficiently. 
Channel attention mechanism is regarded as an object selection process that adaptively decide the 
weights of each channel to determine what need to pay attention to. There are various channel 
attention methods along with their development process respectively in recent years, such as SENet, 
global second-order pooling attention block (Gao et al., 2019), the lightweight style-based 
recalibration attention block (Lee et al., 2019), gated channel attention transformation (Yang et al., 
2020), the efficient channel attention block, multi-spectral channel attention block, multi-spectral 
channel attention block (Qin et al., 2021) and so on. Temporal attention focusing on the problem of 
“when to pay attention”, which is usually used in video processing.  

 
2.2.2. Multi-label learning algorithm 

Multi-label learning solves the problem that a single instance is associated with a set of labels 
simultaneously. The multi-label learning aims to predict the correct set of labels on a single instance 
as accurately as possible, which shows significant implications in practical applications such as scene 
analysis, image annotation and plant disease identification. As the high-dimension feature space and 
numerous noises existing in multi-label data, it is a high challenge to apply widely. In recent years, 
multi-label learning has been explored in learning separated-label and multi-label relationship using 
various techniques. The separated-label approach such as Binary Relevance adopts a classifier such 
as ANN or RBF to learn each class individually and evaluate the output in the target space. The multi-
label relationship methods such as ML-ZSL (Lee et al., 2018) incorporates knowledge graphs to 
describe multi-label relations in the semantic label space. MRDM (Huang et al., 2021) uses the 
dependence of class labels to associate the data space with label space for multi-label feature selection. 
It is a great opportunity and challenge to predict plant disease using multi-label based approaches. 
For example, various diseases occurred on a single leaf as shown in Fig.3. How to identify these 
diseases simultaneously is one of the objectives to be solved in this work. 

 
2.3. Evaluation Metrics 

The evaluation metrics such as accuracy (Acc), precision (Pre), loss, recall, F-score (Fs), hamming 
score, hamming loss and mAPs were adopted in this work. Accuracy is utilized to measure the 
proportion of positive predictions in all samples. Precision is used as the proportion of positive 
predictions among positive samples determined by classifiers. Recall is introduced as the proportion 
of the positive predictions in the positive samples. F-score is used as the harmonic average of 
precision and recall, which is adopted as the evaluation metrics for early stopping and calculated by 
averaging each metric for multiple classes. Hamming loss is introduced in multi-label classification 
problem, which counts the number of misclassified labels. Hamming score returns the average 
accuracy of all samples, and the accuracy rate is the proportion of the number of positive predictions 
that correctly predicted labels to the truly positive labels. Finally, mAP is the abbreviation of mean 
average precision, which calculate the mean value of the average precision in all categories. 

 
2.4. Proposed Method 
 



2.4.1 Model architecture  
In this work, a residual attention based multi-label architecture RAMDI was proposed for apple 

leaf disease prediction. The RAMDI framework is shown in Fig.4. Given a set of labelled base-
resolution apple leaf disease instances, RAMDI learns the mapping between the image features and 
the disease category automatically. Once this mapping is learned, the RAMDI with residual attention 
mechanism enables us to interpret the model and extract the key features that contribute most to the 
positive prediction. There are 4 residual attention stages in RAMDI framework. Each stage contains 
3 convolution layers with BatchNormalization and ReLU activation function, and the attention block 
is embedded in residual attention stage. The global average pooling layer is employed to condense a 
set of information, and then input the condensed features into full connection layer with Sigmoid 
activation function for prediction. 

 
2.4.2 Residual attention block 

In this work, the residual attention stage is designed for feature learning, and the channel attention 
and spatial attention mechanisms are investigated and embedded in the improved residual network 
for feature learning as shown in Fig.5. Two pooling methods such as maxpooling and averagepooling 
are utilized to condense the input feature information respectively, and the matrix addition operation 
is employed between the two condensed features with element-wise sum and fed into channel 
attention and spatial attention mechanisms respectively as demonstrated in (1). 

                                (1) 

where denotes the attention weights, and the Sigmond activation function is implemented for 

normalizing the attention vectors. and  are the expanded channel and spatial attention vectors 

respectively, which are indicated in (2) and (3). 

               (2) 

               (3) 

where denotes the expand operation, which ensures the same feature dimensions between the input 
and output vectors. and denote the channel attention and spatial attention operations, 
denotes the conv1D operation, and denote the maxpooling and averagepooling 
operations respectively. denotes the element-wise sum operation, and denotes the input features. 
Together, the residual attention block can be stated as (4). 
 

                                   (4) 
where denotes the output features of residual attention block. 

 
In the residual attention block, the original features are respectively input into 3 exploited branches 

including attention branch, weight multiplication branch and residual connection branch. Attention 
branch aims to trim invalid informative and enhance the key valuable feature weights. Weight 
multiplication is designed to condense the valuable features that contribute to the true positive 
predictions, and the residual connection branch is utilized to mitigate overfitting and learn the 
categorical features of apple leaf disease images. It is expected that these vectors can well synthesize 
the valuable information needed for each prediction branch. 
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In this work, the RAMDI model maps each vector to the probability of each disease type 
simultaneously. The proposed RAMDI model is optimized by weighting binary cross-entropy loss 
function in different tasks. Specifically, the two attention mechanisms are implemented to account for 
possible interaction of different diseases, and the Sigmoid activation function assigns the possible 
prediction results by one-hot encoding approach, which helps to extract diseases feature patterns in a 
dense manner and aims to generate high dimensional representations of it. 

 
3. Experiment and results analysis 

In this work, the Cent 7.5 Linux operating system with python language, pytorch 1.7 and cuda 10.1 
framework was deployed, and the 4×NVIDIA 2080Ti GPUs were employed for accelerating 
computing in the experiments. 

 
3.1 Implementation details 

In general, the hyperparameters are optimized based on the validation sets, while the final prediction 
results are implemented on the test set. In this work, the stratified 5-fold cross-validation is introduced 
for training in the experiments, while K-fold cross-validation is employed to mitigate overfitting or 
vanishing gradient in deep learning architectures, especially for those who have small or imbalanced 
training set. The stratified 5-fold cross-validation is implemented by extracting the training set 
according to the proportion of categories, which take advantage of all the data categories while it is a 
small amount. The hyperparameters utilized in this work is exhibited in Table.1. 

 
3.1.1 Loss function 

In multi-label learning approaches, there are 2 state-of-the-art loss functions such as Dice and 
binary cross -entropy are employed in this work. The Dice loss is more immune to the data-imbalance 
issue, which attaches similar weights between false positives and false negatives. The Dice loss is 
adaptive in (5). 

                        (5) 

where denotes the sum of simples, denotes the individual example, is the positive simple, is 

a factor to both the nominator and the denominator. The binary cross-entropy loss function is adopted 
for multi-label learning with a robust manner which defined in (6). 

                       (6) 

where denotes the positive prediction labels and is the negative prediction labels, and is 

the positive prediction probability. The binary cross-entropy loss function could continuously reduce 
the cross entropy between outputs and the labels in the training process, so that the output of label 1 
closer to 1 and label 0 closer to 0. In this work, the two loss functions are both implemented, and the 
experiment performance is demonstrated in Section 3.2. 
 
3.1.2 Activation function 

The Sigmoid activation function is utilized with one-hot encoding to adapt multi-label problems, 
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which demonstrated as (7). 

                                (7) 

where is the output probability of the function and is a linear vector, and is tend to 0 or 1 
when the positive or negative predictions are inputted. It is expected to activate the value of each 
prediction at once, and output the probability of each positive prediction respectively. In this work, 
the one-hot encoding method utilizes N-bit state register to encode N states, and each state has its 
own register bits, and only one of them is valid at any time. The workflow of Sigmoid activation 
function with one-hot encoding is illustrated in Fig.6. 
 
3.2 Results and analysis 

To comprehensively evaluate the performance of the proposed RAMDI model, the comparison 
approaches and evaluation metrics are stated here. To ensure a fair and interpretable comparison, the 
classic deep learning approach ResNet-50 was selected as the representative CNN model, and 2 
different loss functions and 2 embedding methods were combined into 4 models for comparison. The 
experimental results on test set are detailed in Table.2. Taking Resnet-50 as the baseline, the 2 loss 
functions such as Dice and binary cross-entropy (BCE) were implemented respectively, the 2 
embedding methods such as embedding in block (see Fig.4) and embedding in stage (see Fig.7) were 
designed in this work. Subsequently, the state-of-the-art attention models such as SENet (Hu et al., 
2020), CBAM (woo et al., 2018), ECA (Wang et al., 2020), and Swin transformer (Liu et al., 2021) 
were introduced for comparison. 

This work aims to design an interpretable classifier that could achieve an exciting performance in 
the identification of multi-label apple leaf diseases. Various combinations of the loss functions and 
attention embedding methods are investigated and the RAMDI with binary cross-entropy loss 
function achieved a satisfactory performance. Importantly, to assess the contribution of the attention 
embedding approach used in our model, the channel attention and spatial attention are implemented 
respectively and add the outputs as an attention block. This approach could take advantage of the two 
attention mechanisms with encouraging results. For pooling operation, the maxpooling and 
averagepooling are employed to trim the input features respectively and add the outputs as input into 
attention block, which retains valuable information to the greatest extent. Besides, the Sigmoid 
activation function and one-hot encoding were cooperated to execute the multiple labels assignment 
tasks. 

 
4 Discussion 

A residual attention based multi-label learning model was designed in this work. It predicted 
multiple occurring diseases on a single apple leaf simultaneously and present the interpretation that 
contributed to the predictions. 

To fully exploit the inherent structure of the prediction models, two different embedding approaches 
and two loss functions were combined respectively. It was found that the binary cross-entropy loss 
function drastically improved the predictive performance. To deal with the dataset bias, the data 
augmentation and stratified 5-fold cross-validation training strategy was adopted for training stage, 
which increased the training effect effectively. It is encouraging that the overall performance of the 
proposed RAMDI model outperforms the conventional machine learning approaches and the existing 
start-of-the-art multi-label models. 

 

1( )
1 xS x
e-

=
+

( )S x x ( )S x



4.1 Interpretability 
A satisfactory model needs not only achieve high prediction accuracy, but also grasp interpretability 

from its internal structure. The proposed RAMDI model adopts residual concatenated attention 
mechanisms and multi-label prediction blocks to explain visually how the model makes specific 
expected decisions. Specifically, this section focuses on why the proposed approach is valued most 
while identifying different diseases, and acquired the kernels which contributed most in the positive 
predictions. 

To the best of our knowledge, when multiple diseases occurred on a single leaf simultaneously, it 
is a disturbing job to predict disease with multiple symptom features using single-label machine 
approaches. The attention mechanisms such as spatial attention and channel attention are transplanted 
to address the problems of “what is the leaf disease” and “where is the leaf disease”. Since the input 
images are capable of picking out specific elements from the features to make output, thus the two 
attention mechanisms give the model ability to determine and place weights on the relevant place of 
the input instances for each prediction work as expected. Consequently, it can be seen that the 
attention mechanisms effectively filter out the noisy information of the false prediction information 
by visualizing the attention tensor weights as shown in Fig.8, the most critical represent parts are 
identified in RAMDI model while making each prediction. 

By calculating the gradient of output tensors with respect to their input, the residual connection 
keeps gradient stable convergence, which reflects the contributions of the input tensors to the output 
in the proposed RAMDI model. In addition, the binary cross-entropy loss function measures the 
contribution of each input instance to each disease prediction and assigns its contribution scores to 
the corresponding label in the output matrix. The threshold parameter is introduced to define whether 
the output is positive or not according to the contribution scores, which could visualize the attribution 
maps of the importance in the predictions.  

 
4.2 limitations 

Different from the single-label prediction models, multi-label learning faces more uncertainties and 
incline to close to the practical planting environment. The occurrence of one disease may be 
accompanied by others. identifying multiple diseases timely is of great practical significance to 
control the spread of diseases. However, it is impossible to address a general disease identification 
model the limited training data, and few-shot learning with multi-label may be a possible solution. In 
addition, the implicit variables relationship of different labels needs to be further explored to 
determine the weight of the corresponding labels. It is significant to analyze the correlation labels to 
improve the performance of prediction models. The attention mechanisms are employed to improve 
model performance in accuracy and robustness. However, the increase of computing resources makes 
it difficult to be deployed in mobile devices, a lightweight attention based multi-label model for plant 
leaf disease identification is expected. 

It is important to note that, the proposed RAMDI model currently does not consider the distinct 
severity of different diseases as it is difficult to obtain disease severity data set. So even in the same 
setting, the false-positive predictions cannot vary substantially between the different severity of leaf 
diseases. The problem is partially due to the limited training data for severity analysis, although it is 
important to develop multi-label learning based plant leaf disease severity prediction models in real-
world. This issue may be alleviated with the development of few-shot learning and digital twin 
technologies. 

 



5. Conclusions 
This work presented RAMDI, a residual attention based multi-label architecture for apple leaf 

disease identification. It is an encouraging finding that the combination of two attention mechanisms 
significantly improved the feature representation ability of apple leaf diseases. In addition, the 
residual concatenation between the input features and the full connection layer tensors improved the 
prediction performance to process multi-label classification tasks. Despite the existing models have 
achieved the state-of-the-art performances in single disease identification, there is still a large margin 
across the board between the laboratory results and practice value, the proposed RAMDI bridges the 
performance gap by giving a more dependable and interpretable approach for detecting multiple 
diseases, which provides a new insight for identifying multiple diseases simultaneously.  

At present, the comprehensive information of plant diseases has not been fully exploited, especially 
the disease severity analysis, mobile terminal-based plant disease identification, and the correlation 
analysis of multiple diseases, and so on. It is expected to develop more robust plant disease 
identification methods to better serve the digital agriculture in future. 
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Fig.1. Part of the collected raw apple leaf disease in orchard 

 
 

 
Fig.2. Part of labelled apple leaf disease images 

 
 

 
Fig.3. Multi-label learning for leaf disease identification 

 



 
Fig.4. The architecture of RAMDI model 

 
 

 
Fig.5. The architecture of residual attention block 

 
 

 
Fig.6. The flow chart of multi-label learning 

 
 



 
Fig.7. Attention mechanisms embedded in residual attention stage 

 
 

 
Fig.8. The visualization of different models 

  



Table 1. The hyperparameters in the proposed method 
 

Hyperparameter Value 

Training strategy stratified 5-fold cross-validation 

Optimization function Adam 

Loss function Binary cross-entropy, Dice 

Activation function ReLU 

Batch size 64 

epochs 200 

 

 

Table 2. Experimental results on test set 

Approaches Evaluation metrics 
Acc Loss Pre Recall Fs HS HL mAPs 

D
ic

e 
lo

ss
 fu

nc
tio

n  

Resnet-50 (baseline) 0.959 0.020 0.982 0.984 0.980 0.975 0.0102 0.959 
Resnet-50_SENet_block 0.965 0.019 0.983 0.983 0.981 0.977 0.0096 0.961 
Resnet-50_SENet_stage 0.961 0.020 0.981 0.983 0.979 0.971 0.0104 0.959 

Resnet-
50_CBAM_block 0.961 0.020 0.982 0.982 0.979 0.974 0.0107 0.954 

Resnet-
50_CBAM_stage 0.945 0.029 0.972 0.975 0.970 0.963 0.0153 0.935 

Resnet-50_ECA_block 0.964 0.019 0.983 0.984 0.981 0.976 0.0097 0.964 
Resnet-50_ECA_stage 0.951 0.025 0.976 0.979 0.974 0.968 0.0130 0.947 
Resnet-50_ours_stage 0.954 0.026 0.975 0.979 0.974 0.969 0.0127 0.953 
Resnet-50_ours_block 0.954 0.024 0.978 0.980 0.976 0.970 0.0121 0.950 

BC
E 

lo
ss

 fu
nc

tio
n  

Resnet-50 (baseline) 0.958 0.021 0.981 0.975 0.978 0.974 0.0078 0.972 
Resnet-50_SENet_block 0.966 0.021 0.985 0.982 0.983 0.980 0.0067 0.974 
Resnet-50_SENet_stage 0.971 0.019 0.985 0.979 0.981 0.978 0.0066 0.973 

Resnet-
50_CBAM_block 0.969 0.022 0.980 0.978 0.978 0.975 0.0078 0.969 

Resnet-
50_CNAM_stage 0.970 0.023 0.981 0.979 0.979 0.976 0.0077 0.971 

Resnet-50_ECA_block 0.974 0.021 0.985 0.982 0.983 0.980 0.0065 0.976 
Resnet-50_ECA_stage 0.973 0.021 0.985 0.981 0.982 0.979 0.0069 0.972 
Resnet-50_ours_stage 0.968 0.023 0.981 0.977 0.978 0.975 0.0079 0.968 

Resnet-50_ours_block 0.976 0.019 0.988 0.985 0.986 0.983 0.0054 0.979 
Swin transformer 0.961 0.022 0.982 0.982 0.979 0.974 0.0117 0.954 

Accuracy (Acc), Loss, Precision (Pre), Recall, F1-score(F1s), Hamming Score (HS), Hamming Loss 
(HL), and mAPs were all collected under the same experiment environment. 

 


