
Abstract
Laser weeding is one of the promising weed control methods

for weed management in organic agriculture. However, the com-
plex field environments lead to low weed detection accuracy,
which makes it difficult to meet the requirements of high-preci-
sion laser weed control. To overcome this challenge and facilitate
precise weeding by laser weeding robots in complex fields, this
study suggests the use of a dual-mode image fusion algorithm of
visible light and infrared light based on machine vision. This inno-
vative technology, introducing infrared information based on vis-
ible light images, enhances weed detection accuracy and resilience
to environmental factors. The introduction of the Swin-trans-
former module and Slim-neck module enables the creation of a
brand new weed detection model allied with the YOLOv8 model,

applicable for weed meristem detection. According to the experi-
mental results, for fusion images with a resolution of 640*640, the
dual-scale fusion of RGB and NIR images on the improved net-
work has an average accuracy (mAP) of 96.0% and a detection
accuracy of 94.0%, respectively. This study builds a laser weeding
robot with a mobile platform, a weed recognition module and a
laser polarization transmitter module. The ROS system is utilized
to effectively detect weeds and determine their geometric center
position after the weed detection model is successfully installed
on the robot platform. The laser vibrator demonstrates accurate
deflection to the weed growth position during the weed detection
and laser illumination experiment. The results show that the accu-
racy of weed detection has reached 82.1%, and the efficiency of
laser weeding has reached 72.3%. These results prove the feasibil-
ity of the laser weeding method proposed in this study. However,
the fusion strategy of these two kinds of images still has great
room for improvement in terms of detection accuracy and efficien-
cy. In the future, multiple modal information can be used to
improve the identification efficiency of weeds in the field.

Introduction
Many countries’ economic development is largely dependent

on their agricultural advancement (Bwambale et al., 2022) and the
primary cause of resource loss and decreased crop output is the
presence of weeds (Fahad et al., 2015; Jiang et al., 2023).
Therefore, one of the longest-standing issues in agricultural sci-
ence has been how to successfully limit weed development (Wu et
al., 2020; Raja et al., 2020).  Herbicides have been used extensive-
ly since their invention and are currently the most common and
effective means of controlling weeds (Wang et al., 2023;
Westwood et al., 2018), but their pollution to the ecological envi-
ronment cannot be ignored (Sujaritha et al., 2017), and when used
repeatedly, they not only make weeds more resistant to control
(Zhu et al., 2020; Machleb et al., 2020), but also present a risk to
human health (Rani et al., 2021). Furthermore, there is little finan-
cial gain from the time-consuming and labor-intensive traditional
manual weeding method. The automation of farmland weeding is
the key step to solving the problem of farming drug damage,
increasing weeding efficiency, and boosting the financial gain
from agriculture. Despite the fact that automated weeding tech-
niques, such as automated targeted sprayers, can minimize the
application of herbicides, the weeding outcome is subpar due to
fog drift and poor adhesion caused by weather factors in targeted
spray weeding methods (Ahmad et al., 2018; Zou et al., 2023).
The herbicide dosage is reduced but the weeding effect is poor. In
addition, non-chemical automatic weeding methods such as
mechanical weeding and flame weeding are also employed in a
certain range. While mechanical weeding is very effective and
low-impact on the environment, in-line weeding can harm crops
and eradicate weeds that are too close to them. Weeding at the
small and vulnerable stage will cause irreversible damage to
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seedlings (Perez-Ruiz et al., 2014; Quan et al., 2022). The flame
weeding method (Martelloni et al., 2020) mostly relies on heavy
machinery, resulting in certain soil compaction and making accu-
rate weeding impossible. Therefore, exploring efficient and eco-
friendly automated weeding technology in farmland is becoming
the main focus of achieving harmless weeding.

In recent years, laser technology has been widely studied as a
more advanced and eco-friendly weeding technique. With its high
efficiency, low damage rate, low pollution, and great adaptability,
laser weeding is a precise non-contact weeding technology that can
be used without touching the soil or crops. However, it does
require a robotic system that can autonomously detect and remove
weeds. The automation of farm operations will promote agricultur-
al intelligence, boost production efficiency and increase economic
benefits. Xiong et al. (2017) built a laser weeding robot to plan the
laser weeding path in a region for static weeding. Zhu et al. (2022)
developed a blue laser weeding robot based on YOLOX to identify
and target weeds, employ blue lasers with increased laser energy,
and study the lethal laser energy of various weeds. Wang et al.
(2022) designed a two-degree-of-freedom head to meet the
requirements of laser weed removal with high precision and
dynamic performance. At 0.1/s speed, the weed removal efficiency
was 0.72 s/ plant and the dwell duration was 0.64s. Arsa et al.
(2023) proposed a convolutional neural network based on encoder-
decoder to train the labeled weed centroid, forecast the location of
weed meristem directly, and achieve the precise strike of laser
weeding by using laser irradiation.

In addition, weed detection in the field is a difficult undertak-
ing. The complicated and variable illumination conditions in the
outdoors cause weed identification accuracy to be lower than in an
indoor setting (Wang et al., 2019). A complex field environment
makes it difficult to rapidly and effectively detect weeds because
of the strong light irradiation, uneven light, and shadow that can
cause significant reflection on the overall or local surface.
Furthermore, early weed detection is essential to minimizing the
usage of herbicides and averting large losses of agricultural
resources (Espejo-Garcia et al., 2023). Thus, the key to enhancing
early weed detection effectiveness in complicated field environ-
ments is to explore ways to reduce the influence of environmental
factors and enhance algorithmic detection performance in the field
weeding process. Increasing the effectiveness of weed detection is
a crucial step toward increasing production efficiency and finan-
cial gains as well as supporting the intelligent and mechanized
agricultural production.

At present, field weed detection mainly relies on single-mode
images obtained by a single sensor, which has limited information
and poor adaptability (Li et al., 2021). When detecting small-size
weeds or weeds with low contrast, single-mode images are often
difficult to achieve effective detection. Moreover, the anti-interfer-
ence strength and accuracy cannot meet the high standards of pre-
cision agriculture (Cisternas et al., 2020). The detection perfor-
mance of single-mode systems, especially visible light images, is
easily affected by changes in lighting conditions. In addition, sin-
gle-mode infrared images or other images with similar modes may
lead to incomplete image information in cloudy, rainy or foggy
days, thus reducing detection efficiency. The advantage of image
fusion creates a new path for the development of target detection
and has been extensively researched and applied. Li and Wu
(2019) proposed a deep learning model based on CNN and dense
blocks to solve the fusion problem of infrared and visible images,
which had advanced fusion performance. Tu et al. (2020) proposed
a multi-scale fast regional convolutional neural network to fuse
color images and depth images in order to detect fruits under vari-

able illumination, severe occlusion and low resolution. Gan et al.
(2018) used a thermal camera and a color camera to establish a
multimodal system to detect immature green citrus fruits.
Compared with color images alone, the image fusion of the two
cameras improved the fruit detection ability. Xu et al. (2021) fused
visible light and depth images, taking into account mutual indepen-
dence and complementarity, and realized the fusion of multi-mode
information at the decision-making level, thus enhancing the per-
formance of weed detection despite the restricted information of
single-mode images. Li et al. (2023) built an interactive attention
module and extracted association information and the boundary
line of farmland headlands using the time series information pro-
cessing module by complementing the features of RGB images
and depth images. Gai et al. (2020) proposed an image processing
pipeline that fused color and depth images to detect and locate
broccoli and lettuce plants. Therefore, the application of image
fusion technology to the agricultural field can increase the accura-
cy of target recognition and improve the efficiency of agricultural
automatic production. However, research on fusion methods for
picture fusion technology is still in its infancy, making its applica-
tion in agriculture difficult.

The key to improving target detection precision is to adopt an
effective feature image fusion technique. Therefore, in order to
address the issue of low recognition efficiency and accuracy in
field weed detection due to environmental factors, this study
adopts a pixel-level image fusion technique based on dual-scale
image fusion to fuse visible light (RGB) and infrared light (NIR)
images captured by laser weeding robots. Weather and variations
in light have little effect on NIR images (Xue et al., 2021). RGB
images are rich in color and contain abundant weed edge and detail
information, which are complementary to NIR images and almost
perfectly capture the natural characteristics of weeds (Ma et al.,
2019), thus improving the reliability and accuracy of weed detec-
tion (Zhang et al., 2020). The use of image fusion to fuse visible
and infrared images is an effective strategy to improve the perfor-
mance of field weed detection systems, especially in the face of
different weather and light conditions. This fusion technique sig-
nificantly enhances the robustness and accuracy of the system by
combining the advantages of both image modes. Specifically, vis-
ible light images provide rich color and texture information to help
identify plants and weeds in good lighting conditions; The infrared
image captures the temperature difference between the plant and
the background, and is less affected by environmental factors such
as rain and fog, which can provide clear images under these condi-
tions and maintain detection performance. In addition, the Swin-
transformer model is utilized to better understand the context
between the RGB and NIR fused images, and to extract the local
and global features in the images more efficiently, so as to improve
the accuracy of weed detection in the field environment. On this
basis, a mobile platform for automatic end-laser polarization weed-
ing is developed to accurately pinpoint the weed’s meristem
(Mathiassen et al., 2006) and trigger laser irradiation, which is of
great significance for enhancing the efficiency of weeding and
minimizing resource waste. Concurrently, the effectiveness of the
multi-mode fusion laser weeding approach is assessed in the field
environment, and its potential use in agricultural production is
explored.

This paper’s remaining content is as follows: the second sec-
tion overviews the process of creating a dataset and bimodal image
fusion, and enhances and optimizes the YOLOv8 network archi-
tecture, particularly in terms of improving the capability to detect
small target weeds and locating their meristem. The weeding
robot’s control system, comprising the flow design of the control

                    Article

                                                                    [Journal of Agricultural Engineering 2024; LV:1598]                                                  [page 129]

Non
-co

mmerc
ial

 us
e o

nly



system and the introduction of the laser galvanometer system, is
designed in the third section. The fourth section carries out the
field experiment and analyzes the comprehensive experiment
results. The fifth and final section provides a summary of the
study’s primary findings as well as recommendations for future
research directions.

Materials and Methods
In order to realize the systematic implementation of precise

weeding by combining deep learning object detection model with
laser weeding technique, this study will tackle aspects such as
image data set creation, dual-mode image fusion, target detection
model construction and improvement to improve field weed detec-
tion performance. After that, field tests of laser weeding will be
conducted to confirm the   viability of weed detection by laser
weeding method and dual-mode image fusion, as well as hardware
construction and model deployment of the laser weeding robot.
The overall process of this study is shown in Figure 1.

Crop and weed detection based on YOLOv8
Data acquisition and dataset creation

Two weed image datasets are employed in this study. The first
one is the German Bonn Beet dataset, a dataset of beet images that
is publicly available (http://www.ipb.uni-bonn.de/data/sugarbeet-
s2016/) and takes the data set as the pre-training of the image. The
second type of data set is the data set taken by the research group
in the corn field of Kexin Agricultural Base, Xiqing District,
Tianjin on July 10, 2023, using Intel realsense camera D435i (Intel,
USA) at a fixed height. The dataset has fewer images and more
unstructured factors in the complex field environment. In addition,
the light intensity is strong and there is a large interference during
shooting. The research carried out shading processing on the image
shooting device, and used 8 fill lights to manually fill the light to
ensure the shooting quality of the data set. In order to obtain a large
amount of detection data of laser weeding robot in the field, image
acquisition was conducted from the human perspective and the
height consistent with the visual detection system of laser weeding
robot. The depth camera was used to shoot vertically down 90°,
which is the normal configuration of field weeding. At the same
time, the video stream information of weeds and plants is collect-
ed, and images can be extracted to enrich the data set. Due to the
limited amount of data in the second dataset images, the Beet
dataset from Bonn, Germany is intended to be used for training the
research network, and the transfer training strategy is adopted for
the self-shot dataset to enhance the model accuracy. The dataset
includes images of beet taken over three months at various growth
stages, times, and light intensities, and the shooting angle is fixed.
However, due to the poor quality of some images, 809 images are
selected from the 2,000 images as the dataset for this study, result-
ing in 809 RGB images (1296*966) and 809 corresponding
infrared images (1296*966).

In this study, LabelImg software is used to manually label
image frames and labels for crops and weeds in the images. yolo
format is used as output, COCO format is adopted, and the images
are divided into two folders: Images and Labels, with Images stor-
ing the images and Labels storing the txt format files of the corre-
sponding images. Because the infrared image coincides perfectly
with the visible image, labeling is valid for both types of images.

Dual-scale image fusion
Conventional machine vision techniques mostly rely on a sin-

gle sensor to gather data; however, they are unable to meet preci-
sion agriculture’s demands for accuracy in real time. In contrast,
multi-modal image fusion technology can greatly enhance detec-
tion performance by fully utilizing complementary information
from various data sources. According to the different processing
levels, image fusion technology can be divided into three kinds:
pixel-level fusion, feature-level fusion and decision-level fusion.
Pixel-level fusion is based on strict image registration, which
directly synthesizes each sensor’s output data to create a fusion
image with additional information. Compared with feature-level
fusion and decision-level fusion, pixel-level image fusion has
advantages in detail information richness, generalization capabili-
ty, data stability and flexibility of image fusion strategy (Li et al.,
2021). Studies have shown that the early stage of image fusion is
particularly effective for small target detection (Cheng et al.,
2023). Therefore, in order to enhance the information in the
images, this study applies the pixel-level dual-scale image fusion
approach (Bavirisetti and Dhuli, 2016) and fuses the 809 visible
and 809 infrared images acquired in accordance with the complex-
ity of the field environment and the volume of information, result-
ing in 809 images with two different types of data. The visible light
and infrared light are fused by the following steps: The pixel-level
fusion method may introduce redundant information and noise
during image fusion. First, the input visible light image and
infrared image are filtered by means of average filtering, and the
average filtering coefficient is 35, so as to remove random noise in
the image, retain the main structure and color information, and
obtain the base layer image. Then, by subtracting the filtered image
from the original image, the detail layer image containing high-fre-
quency information is obtained, and the difference between the
two represents the detail information contained in the image. Then,
the original image is processed by median filtering, and the median
filtering coefficient is 3. Then the error calculation is carried out to
calculate the difference between the median filtered image and the
mean filtered image, and a small constant of 0.01 is added to avoid
the division by zero error. The weight of each pixel is calculated
based on the error, thereby merging the layers of detail. After the
above steps are completed, the image fusion operation is carried
out. First, the average value of the two base layers is fused, which
is used as the fused base layer. According to the weight informa-
tion calculated by the above steps, the detail layer is merged. The
fused image is shown in step 1 of Figure 1.

Data augmentation and partitioning
Data augmentation is a key technique in the field of computer

vision, which aims to enrich the training set by increasing the diver-
sity and quantity of data, thereby improving the robustness and gen-
eralization capability of the model. In this study, we used Python for
data augmentation, including improving image brightness, adding
noise, etc., to further enrich the training set of weeds and crops.
After data augmentation, a total of 2427 images are obtained. In
order to evaluate the performance of the model, the enhanced
dataset is randomly divided into a training set, a validation set and
a test set at a ratio of 8:1:1. Specifically, 1,941 images are used for
training, 242 images for validation, and 244 images for testing.

Improved weed detection model based on
YOLOv8 

This study constructs a deep learning network to precisely
identify weeds in the field, utilizing the advantages of pixel-level
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image fusion to manage the complexity and vast amount of infor-
mation in the field environment for accurate weed identification. In
order to more efficiently extract weed data from the fused images,
this study employs the YOLOv8 network to fulfill the training and
detection tasks following the image fusion, in line with field real-
time prerequisites. The YOLO series is widely used and has
demonstrated remarkable performance in routine target detection
tasks, especially its speed, ease of deployment, and high-precision
features make it a popular choice in the agricultural sector.
However, the performance can be limited when faced with chal-
lenges such as small target features, low-resolution images, blurred
target details, and complex scenes after dual-modal image fusion.
Due to the tiny size, similar color and characteristics of weeds and
crops, and the influence of light and shadow, the YOLOv8 net-
work’s weed detection performance in field environments needs to
be further enhanced, particularly for weed detection and localiza-
tion in the maize seedling stage. To solve the above problems, we
choose the YOLOv8 network as the foundational network frame-
work, improve the YOLOv8 network by incorporating the Swin-
transformer module, and employ the Slim-neck module to boost
the neural network’s effectiveness and performance. The con-
verged network structure, as shown in Step 2, is depicted in Figure
1. YOLOv8 is composed of the backbone network, neck network
and detection head. The neck network and detection head forecast
the boundary box and label of the object in the feature map, while
the backbone network is in charge of extracting image features
from the input image. In order to improve the efficiency of weed
detection in the field, the minimum weight model of YOLOv8 is
selected for pre-training.

Swin-transformer network
As shown in step 2 in Figure 1, in particular, we replace

YOLOv8’s original backbone with Swin-transformer’s backbone.
The introduction of the Swin-transformer module aims to improve
the network’s processing capability for small target features, low-
resolution images, blurred target details and complex scenes after
dual-mode image fusion, so as to improve the detection perfor-
mance of weeds in the field. We will perform a comprehensive per-
formance comparison of the improved network to verify its perfor-
mance improvement. Swin Transformer, as a windowing multi-
head self-attention module, has a similar image feature extraction
capability as convolutional neural networks (CNNS). As a result, it
can serve as the backbone network needed to successfully com-
plete the target detection task. The input image is first divided into
multiple small blocks by the PatchEmbed module, and these
blocks are then embedded in the high-dimensional vector.
SwinStage includes the Patch Merging module and multiple Swin
Transformer Block modules, and calculates the self-attention of
multiple small blocks by employing the hierarchical attention
mechanism. MLP is then used to process the output and extract
higher level features. The PatchMerging module creates a new
vector by fusing the adjacent small blocks to form larger chunks.
The input is effectively subsampled n times by the formula (H/n) x
(W/n) x (2nC), where H, W, and C in step 2 of Figure 1 represent
height, width, and channel depth, respectively.

Lastly, the SPPF module is used for feature processing, which
can effectively extract multi-scale features of the image.
Consequently, the addition of the Swin transformer module, which
is effective at detecting small targets, is chosen to increase the pre-
cision and speed of weed detection.
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Slim-neck module
In this study, the backbone network of YOLOv8 is optimized

to improve its target detection ability. Then, the Slim-neck module
is introduced to lightweight the Head layer of YOLOv8. This
mainly consists of GSconv, GS bottleneck and VoV-GSCSP mod-
ules, which are introduced to improve the ability of feature fusion
and processing, so as to improve the detection accuracy of small
target weeds. The introduction of the GSConv module is to solve
the problem of predictive computing speed in the convolutional
neural network and decrease temporal complexity, The model is
shown in Figure 2. The GS bottleneck module is used to enhance
nonlinear expression and information reuse. VoV-GSCSP module
is a new lightweight model, which is a cross-level partial network
built by one-time aggregation and consists of the widely used
lightweight network structure VoV Net and CSP Net, The model is
shown in Figure 3. By using the VoV-GSCSP module in place of
the original residual structure C2f in the Head layer, the network
model’s lightweight nature is achieved, and the computation cost is
significantly decreased. At the same time, this improvement main-
tains the accuracy of the network model to a certain extent and ful-
fills the detection criteria. This structural improvement can achieve
the lightweight of the model and guarantee the accuracy of the
detection. 

Model training environment and training methods 
In order to achieve more accurate target detection, this research

selects a deep learning framework based on PyTorch architecture
for image processing and model training. The experimental envi-
ronment is configured as follows: Python version 3.8, CUDA 11.7
is used for parallel computing, and cuDNN 11.0 is used as a GPU
acceleration library. The experiment ran on a Windows 11 operat-
ing system with hardware configurations including an NVIDIA
RTX3050 GPU (4GB) and an Intel (R) Core (TM) i5-12500
(2.7GHz) CPU. In the network training process, the number of
training rounds is set to 200, the initial learning rate is set to 0.01,
16 sample graphs are randomly selected for each batch, the SGD
dynamic gradient descent method is adopted, and the model
momentum parameter is set to 0.937 (Table 1).

Furthermore, in order to accurately identify weeds in corn
fields, this study employs a transfer learning technique to transfer
the pre-trained model weights to actual field detection tasks. Due
to the challenge of obtaining large amounts of annotated data in
specific agricultural environments, transfer learning provides a
solution that allows us to significantly minimize the amount of
annotated data required by utilizing pre-trained models on huge
datasets.  In addition, as the model has already acquired many use-
ful features on the source task, transfer learning can also help
shorten training time and improve model performance when the
target task has a small amount of data. The pre-training of the
model on the source task allows it to acquire more broadly appli-
cable features that can improve its performance on the target task.

Evaluation indicators
In order to comprehensively evaluate the performance of our

proposed Swin-T-YOLOv8+Slim neck model in weed detection
tasks, we use multiple evaluation indicators to verify its effective-
ness. Firstly, we adopt average accuracy (map@0.5) as the main
evaluation indicator. map@0.5 is an important evaluation metric
for object detection algorithms, which measures the average accu-
racy of the model at a threshold of Intersection over Union (IoU)
of 0.5. The mAP value is obtained by calculating the area under the
Precision Recall curve, and the higher the mAP value, the better
the detection performance of the model. Calculation of mAP
requires Precision and Recall of model training samples, as shown
in formula (1) and (2):

                                                              
(1)

                                                              
(2)

In the above formula, TP is true positives. If the prediction
result is true (pair), the true value is positives (positive example)
and the model considers them as positives (positive example). FP
is a false positive example, the prediction result is false (wrong),
the true value is negative (negative), the model considers it to be
positives (positive), FN (false negative) indicates that the target
has not been correctly detected.

By calculating the area below the accuracy-recall curve (P-R
curve) formed by the ordinate Precision and the abscissa Recall,
the average precision nAP of the target category can be obtained,
as shown in formula (3) :

                                                                                                    

                                                  
(3)

mAP can be obtained by averaging the average accuracy of n cat-
egories, as shown in formula (4):
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TP FP
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Table 1. Hyperparameter settings.
Hyperparameter settings                              Value

Batch size                                                                      16
Epochs                                                                          200
Initial learning rate                                                     0.001
Momentum                                                                 0.937

Table 2. Comparison of parameters between YOLOV8 and the improved Swin-T-YOLOv8+Slim neck under different modes.
Method                                       Type                         Precision                   Recall                               mAP0.5                        FPS

Swin-T YOLOv8+Slim-neck         RGB+NIR                             0.940                            0.920                                        0.960                                120
Swin-T YOLOv8                            RGB+NIR                             0.936                            0.915                                        0.955                                115
YOLOv8                                         RGB+NIR                             0.814                            0.846                                        0.933                                114
YOLOv8                                             RGB                                 0.802                            0.883                                        0.893                                112
YOLOv8                                              NIR                                  0.842                            0.839                                        0.910                                120
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(4)

Where: n is the total number of categories in the training sam-
ple dataset, and i is the current category number.

These indicators can provide us a basis for further model opti-
mization by giving us a more thorough understanding of the
model’s performance in weed detection tasks. 

Ablation experiment 
In order to verify the efficacy of our dual-mode weed detection

and the improved Swin-T-YOLOv8+Slim-neck model, we use this
dataset to compare the results with those of the single-mode train-
ing. As shown in Table 2, we select a variety of parameters for
comparison to fully evaluate the performance of the model.
Specifically, we compare the YOLOv8 model with RGB and NIR
images as inputs, the YOLOv8 model with RGB and NIR image
fusion, and our proposed Swin-T YOLOv8 model. Through con-
trastive analysis, we verify the effectiveness of bimodal image
fusion and the performance of the improved network model.

The experimental data are shown in Table 2. Three experi-
ments were conducted for each model adopted in the table, and the
result of one of the best results among the three experiments of
each model was used as the representative parameter of this exper-
iment. The results indicate that the improved Swin-t YOLOv8
mAP has a higher score (0.9553) than the four different types of
the unimproved YOLOv8 network (dual-mode, RGB single-mode,
and NIR single-mode) when compared to the original network.
The dual-mode training results of the improved Swin-T-
YOLOv8+Slim-neck module are improved by 0.5% compared
with Swin-T-YOLOv8 network dual-mode accuracy, 2.7% com-
pared with YOLOv8 network dual-mode accuracy, 6.7% compared
with RGB single-mode accuracy, and 5% compared with NIR sin-
gle-mode accuracy. Furthermore, in terms of detection accuracy
index, the improved Swin-T-YOLOv8+Slim-neck dual-mode
improves by 0.4% compared with Swin-T-YOLOv8 network dual-

mode accuracy, 8.5% compared with RGB single-mode accuracy,
and 10.4% NIR single-mode accuracy. In terms of Recall value,
the parameter value of the improved Swin-T-YOLOv8+Slim-neck
model also performs the best, reaching 92.0%. Compared with the
Swin-T-YOLOv8 network, the dual-mode accuracy is improved by
0.5%, and compared with the original YOLOv8 network and the
fused image, the accuracy is improved by 7.4%. Compared with
RGB and NIR, the single-mode increases by 3.7% and 8.1%
respectively. In terms of FPS, the improved Swin-T-
YOLOv8+Slim-neck model and the single-mode NIR model per-
form best, reaching 120.The following Figure 4 shows the compar-
ison of the training process of multiple models mAP0.5 and preci-
sion on the extended data set.

The experimental comparison is shown in Figure 4. According
to the data in Figure 4a, the improved Swin-T-YOLOv8+Slim-
neck model has great advantages compared with single-mode NIR
and RGB images, and the accuracy of the network model without
improvement using fusion images is further improved. At the same
time, it can be seen from Figure 4b that the improved Swin-T-
YOLOv8+Slim-neck model has better performance in stability and
accuracy values. The effectiveness of our improved Swin-T
YOLOv8 model for weed detection in complex field environments
was verified. At the same time, these results also highlight the
advantages of dual-mode image fusion and Swin-T-
YOLOv8+Slim-neck model improvement in improving detection
performance.

Detection and extraction of meristem position in
weeds

Laser weeding technology is a method of using a high energy
laser beam to accurately irradiate the growing point of weeds, and
its purpose is to destroy the cell structure of weeds so as to achieve
the effect of eliminating weeds. Determining the location of the
weeds’ growing points is crucial after weeds and crops have been
identified (Marx et al., 2012). The early growth of a weed depends
mainly on the continuous division and differentiation of its meris-
tem cells, which are mainly concentrated in the growing points of

0

1
i

n

AP
i

mAP n
n =

= ! !
                    Article

                                                                    [Journal of Agricultural Engineering 2024; LV:1598]                                                  [page 133]

Figure 2. GSConv schematic diagram.
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the weed, such as the stem tips and root tips. However, laser irra-
diation cannot directly affect root tips because they are typically
found beneath the soil. Thus, laser weeding technology is mainly
aimed at the stem tip of weeds.

In this study, the weed is eliminated by irradiating the growing
point of the weed stem, and image processing technology is used
to precisely extract the location of the weed stem’s growing point.
Only by accurately locating the growing point of the weed can we
guarantee that the laser irradiation can destroy the meristem of the
weed to the greatest extent so as to effectively eliminate the weed.

There are three steps in the process of weed detection: First, we
use the two-scale image fusion method to fuse the real-time visible
and infrared images; Second, we use the improved Swin-T-
YOLOv8+Slim-neck network to detect crops and weeds, obtaining
the classification and location of weeds. Finally, the location of
weed meristem is determined. Since weeds are typically distribut-
ed symmetrically in their young stage, we determine the central
location of weeds by calculating the geometric center of the detect-
ed weed boundary box (as shown in Figure 5). This approach has
a low computing complexity and minimal resource consumption,
and it greatly improves laser weeding stability and accuracy. At the
end, the calculated geometric center position is taken as the laser
irradiation target point, as shown in step 3 in Figure 1.

Statistical experiment
To evaluate the efficiency of detection and laser irradiation of

weed meristem using an automated laser weeding robot under field
conditions prior to field trials. The experiment was carried out
between five different maize rows, and the number of weeds in
each row was different to meet the differences of field environ-
ment.

The collected data included the total number of weeds per row,
the number of weeds effectively detected, and the number of effec-
tive weed meristem irradiated by the effective laser. The accuracy
of weed detection and the efficiency of laser irradiation of weed
meristem were calculated. The accuracy rate is calculated by divid-

ing the number of weeds effectively detected by the total number
of weeds, and the efficiency is calculated by dividing the number
of weeds successfully irradiated by the laser into the number of
weeds effectively detected.

Weeding robot control system 
Software and hardware settings of the control system

The robot mobile platform is the carrier of two-mode weed
detection and laser weed control. As shown in step 4 of Figure 1,
based on prior research experience (Bawden et al., 2017), an elec-
tric-powered mobile platform for weeding robots is developed,
which can be remotely controlled by an operator. The scalable plat-
form is designed to conform to the actual growth width of the
plant, and the distance between the two rounds can be adjusted at
any time to adapt to the working conditions of varying plant dis-
tances.

The robot mobile platform, the vision inspection system, and
the laser control system make up the three primary components of
the mobile platform. The mobile platform is composed of two
sides of the walking device, the overall body frame and the suspen-
sion device. To increase turning flexibility and reduce turning
radius, the mobile platform is driven by two hub motors, the hub
motor model SVD48V30A, which are located on the front wheels.
The rear wheel is universal, and the platform steering is realized by
the differential rotation of the two driving wheels. The overall
drive system is powered by a ternary lithium battery (48V35Ah).
The visual inspection system is responsible for the real-time detec-
tion and identification of weeds and crops in the field. The on-
board laptop computer and depth camera D435i make up the visual
inspection system, which is in charge of processing weed informa-
tion and weed detection. It is possible to capture both visible and
infrared images with the Intel Realsense camera D435i (Intel,
USA). The camera has a focal length of 1.93 mm, and its parame-
ters include maximum resolution, visible light sensor resolution
and frame rate, and infrared resolution and frame rate. More
specifically, the visible light sensor has a resolution and frame rate
of 1920× 1080, 30 FPS (maximum), and the infrared resolution
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Figure 3. VoV-GSCSP structure diagram.
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and frame rate of 1280× 720,90 FPS (maximum). The camera’s
shooting Angle is fixed, and the preset camera height is 46 cm.
Two-modal image fusion technology and deep learning algorithm
are used to improve the accuracy and efficiency of weed detection.
The STMF407ZGT6 microcontroller serves as the primary control
chip in the laser control system, enabling drive control of the laser
actuator’s data information and realization of analog-to-digital
conversion. The controller is built around the ARM Cortex-M4
core, equipped with large capability flash and SARM, which per-
forms well in digital signal control, image processing and other
areas, and can adapt to the needs of field weeding. In addition, the
laser control system also includes 15kHz AT15 scanning gal-
vanometer, 405nm laser emitter, laser optical path layout board,
laser driver, DAC8563 module, 220V power supply.

An automobile computer with the Ubuntu 20.04 operating sys-
tem serves as the top computing device employed in this study, and
its core control system is ROS (Noetic) installed in the operating
system. The accuracy and real-time laser weeding are guaranteed
by ROS, which communicates with each node through the way of
publishing/subscribing messages, and each node is independent of
each other, with a high degree of flexibility and scalability.
Additionally, we may finish the fine-tuning of the Settings by mak-
ing adjustments to the ROS system.

Control system flow
While the laser weeding process is automated, the operator

moves the robot mobile platform remotely during the weeding
operation phase. As shown in Figure 6, based on the improved
Swin-T YOLOv8 network model, the trained model file (.pt file) is
deployed offline to the ROS system for the prediction of crop and
weed images in the field. The real-time image data acquired by the
camera is transmitted to the ROS system via USB, and the visible
and infrared image information is released in the form of
color/image_raw and infra1/image_raw topics.

A node named yolov8 is constructed for target detection. This
node subscribes to the topic of taking and publishing pictures and
receives image information in real time. Using the dual-scale
image fusion method, the visible and infrared images are fused,
and the fused images are then fed into the Yolov8 detection mod-

ule. The weights obtained by training are used to predict the detec-
tion frame containing the type and location of crops and weeds.
The geometric location center of the detection frame is computed
based on the obtained weed detection frame, and the location infor-
mation of the obtained weed center is published in the detection
topic. Subsequently, a node named center_listener is established in
order to subscribe to the topic and forward the received messages
over the serial port. After receiving the messages from the serial
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Figure 5. Weed meristem labeling process.

Figure 4. Comparison of the training processes of multiple models
mAP0.5 and precision on the extended dataset.
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port, the STM32 device processes these messages through the
internal program, and transmits the processed signal to the laser
control system through the DAC8563 module. Finally, the laser
control system performs accurate weeding operations based on
these signals. When the geometric position center of the weed is
detected, the laser polarization device aligns itself with the geo-
metric position center of the weed. The main steps are as follows:
(a) Receive the images taken by the depth camera D435i and fuse

the resulting visible and infrared images; (b) Display the improved
Swin-T YOLOv8 network to detect weed and crop classification
results and detection boxes; (c) Calculate the geometric location
center of the weed boundary box to determine the meristem loca-
tion of the weed; (d) Publish the central location information of
weeds through the node to the serial port; (e) The TTL-USB mod-
ule receives the aforementioned data from the serial port; the
STM32F407ZGT6 microcontroller processes it and forwards it to
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Figure 6. Overall control flow chart.

Figure 7. ROS system control flowchart and working principle diagram.
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the DAC8563-SPI module, which then transmits a signal to control
the laser galvanometer’s deflection; (f) After controlling the laser
scope deflection of one weed unit, go to the next weed location and
repeat the above operation. Figure 7 below shows the ROS system
control flow chart and working principle diagram.

Design of weed detection nodes
In our automatic weeding system, a ROs-based multi-node

architecture is designed to achieve efficient communication and
collaboration between components. First, create a ROS topic
called weed_detection for communication between the depth cam-
era and the ROS system. Offline training files, tag files, and API
libraries will all be covered in this topic. Next, start the yolov8_ros
node and run the yolo_v8.py file, which is responsible for receiv-
ing images from the depth camera. This node subscribes to the
topic /camera/color/image_raw and /camera/infra1/image_raw to

obtain the image information released by the D435i camera and
completes the fusion of dual-mode images. The pre-trained Swin-
T YOLOv8 weight model (.pt file) is used to detect and process the
image. The detected image information is made available to the
yolov8/center topic, which contains the geometric location and
center location information of several weeds. The center_listener
node is used to subscribe to the topic and simultaneously provide
data to the serial port. Through the collaboration of multiple nodes
and topics, the ROS system enables the completion of the entire
process, from image acquisition by depth camera to weed detection
using the improved model, then to publishing the detection results
and processing the central information of weeds, as shown in
Figure 8.
Laser control node design

In the automatic laser weeding system, the laser control node
receives the central location information of multiple weeds from
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Figure 8. Detection node design.

Figure 9. Laser control flowchart.
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the serial port: Through the use of a USB serial port, the ROS sys-
tem communicates with an STM32 microcontroller, which
receives and processes the information in real time. The STM32
microcontroller then controls the output of the digital analog con-
verter (DAC) in accordance with these data, and the DAC converts
the information into a voltage signal, thus controlling the rotation
of the laser galvanometer. The laser control flow chart is shown in
Figure 9.

Laser galvanometer device
The laser weeding system mainly produces laser by laser emit-

ter. The core components of the system include a 15kHz AT15
scanning galvanometer, a 405 nm laser transmitter, a laser optical
path layout board, a laser driver, and a DAC8563 module with an
SPI interface.

Field weeding requirements can be addressed by the 15kHz
AT15 scanning galvanometer, which can swiftly and precisely alter
the direction of the laser beam to cover the entire field within a -
20° to 20° polarization angle range. The DAC8563 module is
responsible for converting the incoming digital signal into an ana-
log signal to control the movement of the galvanometer, and this
conversion process enables the system to precisely control the
direction of the laser beam. To guarantee precise laser transmis-
sion, a stable laser optical path is constructed using the laser opti-
cal path layout board. The laser driver provides a high voltage to
the laser galvanometer device, allowing it to control the gal-
vanometer rotation in response to voltage variations. In the process
of laser weeding, when the weeding device moves above the weed,
the system first controls the laser scope to deflect a specific Angle
according to the position information of the weed meristem. Next,
it activates the laser emitter to emit light, adjusting the laser’s posi-
tion irradiation based on the real-time information received, allow-
ing for the precise removal of each weed. The hardware connection
of the laser weeding device is shown in Figure 10.

Results and Discussion
Control of robot vision system

The mismatch of relative location information between the vis-
ible image and the infrared image captured by the depth camera is
a concern. To address this issue, a feature-based image registration

method is used to align the infrared image with the visible image.
This guarantees the consistency of the weed location data obtained
from the visible and infrared images. The camera is calibrated to
make sure the laser scope can accurately illuminate the location of
the weed meristem that the depth camera detected. First, 20 sets of
data are measured at the location of the laser irradiation using a
calibration plate, which contain the location of the calibration
board in both the image coordinate system and the world coordi-
nate system. The transformation relationship between the image
coordinate system and the world coordinate system is computed
and the internal and external camera parameters are derived by
comparing these positions in the two coordinate systems. Through
these parameters, the weed meristem locations identified by the
depth camera can be accurately mapped to the irradiation location
of the laser galvanometer to achieve accurate laser irradiation.

Laser control system regulation
Since precise laser control is essential for eliminating weeds,

the magnitude of the different voltage amplituaries in the laser
polarization device of the laser weeding robot is collected. Since the
location of laser irradiation is related to the height from the ground,
the height of the laser polarization device was set to 50cm and the
height from the target weed was 46cm to analyze the error relation-
ship between the output voltage and the location of laser irradiation.
The experimental results show that when the output voltage reaches
4V, the laser galvanometer reaches its maximum deflection Angle,
that is, 20°. In addition, the experiment also shows that the deflec-
tion Angle of the galvanometer decreases linearly with the decrease
of voltage. Since the relation between voltage input and deflection
Angle of galvanometer is definite, the relation between deflection
Angle and position distance is obtained by measuring the position
of laser irradiation at different angles. The laser irradiation distance
is compensated for the set voltage value, and by lowering the cor-
responding voltage value, the relationship between the corrected
distance and the voltage output is obtained.

Field trials of laser weeding robots
The built laser weeding robot was tested in a standard field,

and the experimental results were collected and classified. The
field experiment was carried out in the maize planting field of
Kexin Agricultural Base in Jinghai District, Tianjin. The experi-
mental conditions were as follows: maize seedlings and weeds
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Figure 10. Laser hardware connection diagram.
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existing in the three to five leaf stage of maize were planted in flat
cropping mode, with row spacing of 60 cm, plant spacing of 25
cm, and crop height of 20-30 cm. The weather is fine, 28~35°C,
the southeast wind is 2, and the precipitation of this month is 0 as
of the experiment day. The camera is mounted in the center of the
platform chassis through the jig, 46 cm from the ground. Because
the field light intensity is too strong, so the use of shading cloth to
reduce the light to meet the requirements of the experiment. The
field test of the weeding robot is shown in Figure 11. The platform
is built with 40×40 European standard aluminum profiles. The
front wheels are driven by wheel hub motors and powered by
ternary lithium batteries. The rear wheels are equipped with uni-
versal wheels, which work together with the front wheels. Steering
is achieved by the differential rotation of the front wheel hub motor
controlled by the SVD48V50A motor driver. This paper studies the
use of manual control to adjust the direction through the dual drive
remote control and its signal receiver. The built laser weeding
robot was tested in a standard field, and the experimental results
were collected and classified. The field experiment was carried out
in the maize planting field of Kexin Agricultural Base in Jinghai
District, Tianjin. The experimental conditions were as follows:
maize seedlings and weeds existing in the three to five leaf stage
of maize were planted in flat cropping mode, with row spacing of
60 cm, plant spacing of 25 cm, and crop height of 20-30 cm. The
weather is fine, 28~35°C, the southeast wind is 2, and the precipi-
tation of this month is 0 as of the experiment day. The camera is
mounted in the center of the platform chassis through the jig, 46
cm from the ground. Because the field light intensity is too strong,
so the use of shading cloth to reduce the light to meet the require-
ments of the experiment. The field test of the weeding robot is
shown in Figure 11. The platform is built with 40×40 European
standard aluminum profiles. The front wheels are driven by wheel
hub motors and powered by ternary lithium batteries. The rear
wheels are equipped with universal wheels, which work together
with the front wheels. Steering is achieved by the differential rota-
tion of the front wheel hub motor controlled by the SVD48V50A
motor driver. This paper studies the use of manual control to adjust

the direction through the dual drive remote control and its signal
receiver. In the operating state, the depth camera is installed in the
abdomen of the mobile platform through the connector, and the
laser device is installed in the tail of the mobile platform. Weeds
and crops first pass through the field of view area of the camera,
and then reach the treatment area of the laser weeding device,
detect and obtain the location of weed meristem, and guide the
laser weeding device to treat the corresponding area. In addition,
the proficiency of a laser weeding robot’s identification abilities is
assessed. In this paper, a “stop-and-go” moving mode is used to
control the robot walking, and the robot stops moving when con-
trolling the laser weeding. In order to improve the efficiency of
laser weeding, it is necessary to avoid the problem that the laser
polarization device and moving platform can not accurately point
to the center of the weeds when they are moving. The laser polar-
ization device is controlled at a distance of 50cm from the ground
and 46cm from weeds. The main body of the image acquisition
device is an aluminum alloy rectangular frame composed of 40×40
European standard profiles. In order to reduce the influence of
weed exposure factors caused by direct sunlight and strong light on
the weeding effect, a blackout screen is used to shield the camera
and laser weeding components to improve the accuracy of weed
detection. The research uses a blackout cloth to cover the frame
and form a black box to isolate the sunlight in the identification
area. The black box opens front and back to pass through the crop
and weed plants, and is equipped with 8 sets of LED lights to pro-
vide a stable light source. In the middle area of the light source, the
D435i depth camera is installed as the core component of the
image acquisition device. The frame length is 180 cm, the width
perpendicular to the forward direction is 54 cm, and the camera
field of view is 36×46 cm. The depth camera, D435i, captures
images with a resolution of 384x480 pixels and a frame rate of
about 20FPS. According to the results of statistical experiment
Table 3, under field conditions, the total number of weeds in the
detection area was 206, the number of effective detected weeds
was 170, the accuracy rate of weed detection was 82.1%, the total
number of effective detected weed meristem locations was 122,
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Figure 11. Field images of laser weeding robot.
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and the accuracy rate of effective simulation laser was 72.3%,
which was lower than the accuracy of laboratory training results.
On the one hand, large random interference has a high impact on
model detection, on the other hand, ground fluctuation reduces the
recognition and laser aiming accuracy of the weeding robot. which
is lower than the accuracy of the training results in the lab. Finally,
due to the fluctuation of speed, the laser could not be irradiated in
time after the detection of weeds, resulting in a low laser accuracy.
Large random interference has a higher effect on model detection
on the one hand, but ground fluctuation reduces the identification
and laser pointing accuracy of weeding robots on the other. With
its high detection performance and ability to eliminate interference
from field environmental factors, the Swin-T yolov8 detection
model based on image fusion can increase the accuracy of weed
detection and fulfill the demands of precise laser control and field
irradiation. 

Therefore, in order to more clearly illustrate the irradiation
position of laser weeding, three field test images with superior
effects were chosen to display. The experimental images of the
weeds being exposed to radiation during the field weeding proce-
dure using a laser weeding robot are shown in Figure 12.

Conclusions and Future Prospects
In order to address the issues of low weed detection accuracy

and poor anti-interference strength caused by environmental fac-
tors in field circumstances,  as well as to encourage the employ-
ment of multi-modal image fusion and laser weed control technol-
ogy in precision agriculture weed management, this study proposes
a laser weed control robot based on dual-mode fusion weed detec-
tion. The three primary components of the research are the fusion
of infrared and visible images, the improvement of the YOLOv8
network model structure, and the control of the laser polarization

device. The two-mode fusion technique of fusing visible and
infrared images adopts the two-scale fusion method of pixel-level
fusion to fuse the two. The experimental findings demonstrate that
the method can significantly increase the accuracy of weed detec-
tion and improve the adaptability in various field scenarios when
compared to the results of image training in single mode. We
improve the YOLOv8 model to increase the accuracy of weed
detection for small target weeds. The outcomes demonstrate that
the improved Swin-T-YOLOv8+Slim-neck has higher accuracy in
detecting small target weeds with a weed detection efficiency of
96.0%. On this basis, this study designs and builds an intelligent
laser weeding robot, which deploys image fusion, weed detection,
intelligent control and other technologies. Through machine vision
detection and positioning of the geometric position center of
weeds, an efficient laser weeding method is realized. Under field
conditions, the accuracy rate for weed detection is 82.1%, and the
effective simulation rate for laser removal is 72.3%. The experi-
mental results show that the application of the above method can
accurately point the location of weed meristem, solve the problem
of low precision and poor robustness of weed detection by various
factors, and provide an advanced method for field target detection.
In addition, the laser weeding method also provides an optional
method for field cleaning and precise weeding.

This method meets the requirements of precision and environ-
mental protection in field weeding. In recent years, the research of
multimodal image fusion and laser irradiation technology has been
deepening, and the technology has gradually become mature and
stable. There is a growing demand for such technologies in the
agricultural sector, especially in smart and precision agriculture. In
the field of agricultural weeding commercialization in the future,
multi-mode laser weeding robots will certainly promote the pro-
cess of intelligent weeding technology.

The laser weeding robot still has certain limitations, despite the
improved model’s partial success in achieving high precision: it
lacks a comprehensive robot system that integrates detection, nav-
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Table 3. Statistical experiments of weeds irradiated by laser.
Corn row number         Number           Number of weeds             Average accuracy of                Effective monitoring sites of              Effective laser
                                        of weeds         effectively detected                weed detection                                 weed meristem                          removal rate

1                                                   52                                 170                                           82.1%                                                           31                                                  72.3%
2                                                   41                                                                                                                                                        27                                                       
3                                                   31                                                                                                                                                        18                                                       
4                                                   38                                                                                                                                                        24                                                       
5                                                   44                                                                                                                                                        22

Figure 12. Location diagram of weed meristem of three different weeds irradiated by laser in the field.
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igation, and control, thus some manual involvement is still neces-
sary. In addition, the laser control device subject to experimental
conditions can also improve the precision and efficiency of weed-
ing. Subsequent research endeavors may explore the incorporation
of cross-modal imagery to address the challenges involved in weed
detection more thoroughly. Simultaneously, when the impact on
weed detection efficiency is minimal, we can combine the data that
comprehensively conveys weed features in order to enhance weed
detection efficiency. A laser control system with adjustable laser
energy is studied to emit different laser energies in different weeds
and different growth periods to remove weeds more efficiently.
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