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Abstract 
Laser weeding is one of the promising weed control methods for weed management in organic 
agriculture. However, the complex field environments lead to low weed detection accuracy, 
which makes it difficult to meet the requirements of high-precision laser weed control. To 
overcome this challenge and facilitate precise weeding by laser weeding robots in complex fields, 
this study suggests the use of a dual-mode image fusion algorithm of visible light and infrared 
light based on machine vision. This innovative technology, introducing infrared information 
based on visible light images, enhances weed detection accuracy and resilience to environmental 
factors. The introduction of the Swin-transformer module and Slim-neck module enables the 
creation of a brand new weed detection model allied with the YOLOv8 model, applicable for 
weed meristem detection. According to the experimental results, for fusion images with a 
resolution of 640*640, the dual-scale fusion of RGB and NIR images on the improved network 
has an average accuracy (mAP) of 96.0% and a detection accuracy of 94.0%, respectively. This 
study builds a laser weeding robot with a mobile platform, a weed recognition module and a laser 
polarization transmitter module. The ROS system is utilized to effectively detect weeds and 
determine their geometric center position after the weed detection model is successfully installed 
on the robot platform. The laser vibrator demonstrates accurate deflection to the weed growth 
position during the weed detection and laser illumination experiment. The results show that the 
accuracy of weed detection has reached 82.1%, and the efficiency of laser weeding has reached 
72.3%. These results prove the feasibility of the laser weeding method proposed in this study. 
However, the fusion strategy of these two kinds of images still has great room for improvement 
in terms of detection accuracy and efficiency. In the future, multiple modal information can be 
used to improve the identification efficiency of weeds in the field. 
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Introduction 

Many countries' economic development is largely dependent on their agricultural 
advancement (Bwambale et al., 2022) and the primary cause of resource loss and decreased crop 
output is the presence of weeds (Fahad et al., 2015; Jiang et al., 2023). Therefore, one of the 
longest-standing issues in agricultural science has been how to successfully limit weed 
development (Wu et al., 2020; Raja et al., 2020).  Herbicides have been used extensively since 
their invention and are currently the most common and effective means of controlling weeds 
(Wang et al., 2023; Westwood et al., 2018), but their pollution to the ecological environment 
cannot be ignored (Sujaritha et al., 2017), and when used repeatedly, they not only make weeds 
more resistant to control (Zhu et al., 2020; Machleb et al., 2020), but also present a risk to human 
health (Rani et al., 2021). Furthermore, there is little financial gain from the time-consuming and 
labor-intensive traditional manual weeding method. The automation of farmland weeding is the 
key step to solving the problem of farming drug damage, increasing weeding efficiency, and 
boosting the financial gain from agriculture. Despite the fact that automated weeding techniques, 
such as automated targeted sprayers, can minimize the application of herbicides, the weeding 
outcome is subpar due to fog drift and poor adhesion caused by weather factors in targeted spray 
weeding methods (Ahmad et al., 2018; Zou et al., 2023). The herbicide dosage is reduced but the 
weeding effect is poor. In addition, non-chemical automatic weeding methods such as mechanical 
weeding and flame weeding are also employed in a certain range. While mechanical weeding is 
very effective and low-impact on the environment, in-line weeding can harm crops and eradicate 
weeds that are too close to them. Weeding at the small and vulnerable stage will cause irreversible 
damage to seedlings (Perez-Ruiz et al., 2014; Quan et al., 2022). The flame weeding method 
(Martelloni et al., 2020) mostly relies on heavy machinery, resulting in certain soil compaction 
and making accurate weeding impossible. Therefore, exploring efficient and eco-friendly 
automated weeding technology in farmland is becoming the main focus of achieving harmless 
weeding. 

In recent years, laser technology has been widely studied as a more advanced and eco-
friendly weeding technique. With its high efficiency, low damage rate, low pollution, and great 
adaptability, laser weeding is a precise non-contact weeding technology that can be used without 
touching the soil or crops. However, it does require a robotic system that can autonomously detect 
and remove weeds. The automation of farm operations will promote agricultural intelligence, 
boost production efficiency and increase economic benefits. Ya Xiong et al. (Xiong et al., 2017) 
built a laser weeding robot to plan the laser weeding path in a region for static weeding. Zhuhuibin 
et al. (Zhu et al., 2022) developed a blue laser weeding robot based on YOLOX to identify and 
target weeds, employ blue lasers with increased laser energy, and study the lethal laser energy of 
various weeds. Mingfeng Wang et al. (Wang et al., 2022) designed a two-degree-of-freedom head 
to meet the requirements of laser weed removal with high precision and dynamic performance. 
At 0.1/s speed, the weed removal efficiency was 0.72 s/ plant and the dwell duration was 0.64s. 
Dewa Made Sri Arsa et al. (Arsa et al., 2023) proposed a convolutional neural network based on 
encoder-decoder to train the labeled weed centroid, forecast the location of weed meristem 
directly, and achieve the precise strike of laser weeding by using laser irradiation. 



 

 

In addition, weed detection in the field is a difficult undertaking. The complicated and 
variable illumination conditions in the outdoors cause weed identification accuracy to be lower 
than in an indoor setting (Wang et al., 2019). A complex field environment makes it difficult to 
rapidly and effectively detect weeds because of the strong light irradiation, uneven light, and 
shadow that can cause significant reflection on the overall or local surface. Furthermore, early 
weed detection is essential to minimizing the usage of herbicides and averting large losses of 
agricultural resources (Espejo-Garcia et al., 2023). Thus, the key to enhancing early weed 
detection effectiveness in complicated field environments is to explore ways to reduce the 
influence of environmental factors and enhance algorithmic detection performance in the field 
weeding process. Increasing the effectiveness of weed detection is a crucial step toward 
increasing production efficiency and financial gains as well as supporting the intelligent and 
mechanized agricultural production. 

At present, field weed detection mainly relies on single-mode images obtained by a single 
sensor, which has limited information and poor adaptability (Li et al., 2021). When detecting 
small-size weeds or weeds with low contrast, single-mode images are often difficult to achieve 
effective detection. Moreover, the anti-interference strength and accuracy cannot meet the high 
standards of precision agriculture (Cisternas et al., 2020). The detection performance of single-
mode systems, especially visible light images, is easily affected by changes in lighting conditions. 
In addition, single-mode infrared images or other images with similar modes may lead to 
incomplete image information in cloudy, rainy or foggy days, thus reducing detection efficiency. 
The advantage of image fusion creates a new path for the development of target detection and has 
been extensively researched and applied. Hui Li et al. (Li and Wu, 2019) proposed a deep learning 
model based on CNN and dense blocks to solve the fusion problem of infrared and visible images, 
which had advanced fusion performance. Shuqin Tu et al. (Tu et al., 2020) proposed a multi-scale 
fast regional convolutional neural network to fuse color images and depth images in order to 
detect fruits under variable illumination, severe occlusion and low resolution. Gan et al. (Gan et 
al., 2018) used a thermal camera and a color camera to establish a multimodal system to detect 
immature green citrus fruits. Compared with color images alone, the image fusion of the two 
cameras improved the fruit detection ability. Ke Xu et al. (Xu et al., 2021) fused visible light and 
depth images, taking into account mutual independence and complementarity, and realized the 
fusion of multi-mode information at the decision-making level, thus enhancing the performance 
of weed detection despite the restricted information of single-mode images. Dongfang Li et al. 
(Li et al., 2023) built an interactive attention module and extracted association information and 
the boundary line of farmland headlands using the time series information processing module by 
complementing the features of RGB images and depth images. Jingyao Gai et al. (Gai et al., 2020) 
proposed an image processing pipeline that fused color and depth images to detect and locate 
broccoli and lettuce plants. Therefore, the application of image fusion technology to the 
agricultural field can increase the accuracy of target recognition and improve the efficiency of 
agricultural automatic production. However, research on fusion methods for picture fusion 
technology is still in its infancy, making its application in agriculture difficult. 

The key to improving target detection precision is to adopt an effective feature image fusion 
technique. Therefore, in order to address the issue of low recognition efficiency and accuracy in 
field weed detection due to environmental factors, this study adopts a pixel-level image fusion 
technique based on dual-scale image fusion to fuse visible light (RGB) and infrared light (NIR) 



 

 

images captured by laser weeding robots. Weather and variations in light have little effect on NIR 
images (Xue et al., 2021). RGB images are rich in color and contain abundant weed edge and 
detail information, which are complementary to NIR images and almost perfectly capture the 
natural characteristics of weeds (Ma et al., 2019), thus improving the reliability and accuracy of 
weed detection (Zhang et al., 2020). The use of image fusion to fuse visible and infrared images 
is an effective strategy to improve the performance of field weed detection systems, especially in 
the face of different weather and light conditions. This fusion technique significantly enhances 
the robustness and accuracy of the system by combining the advantages of both image modes. 
Specifically, visible light images provide rich color and texture information to help identify plants 
and weeds in good lighting conditions; The infrared image captures the temperature difference 
between the plant and the background, and is less affected by environmental factors such as rain 
and fog, which can provide clear images under these conditions and maintain detection 
performance. In addition, the Swin-transformer model is utilized to better understand the context 
between the RGB and NIR fused images, and to extract the local and global features in the images 
more efficiently, so as to improve the accuracy of weed detection in the field environment. On 
this basis, a mobile platform for automatic end-laser polarization weeding is developed to 
accurately pinpoint the weed's meristem (Mathiassen et al., 2006) and trigger laser irradiation, 
which is of great significance for enhancing the efficiency of weeding and minimizing resource 
waste. Concurrently, the effectiveness of the multi-mode fusion laser weeding approach is 
assessed in the field environment, and its potential use in agricultural production is explored. 

This paper's remaining content is as follows: The second section overviews the 
process of creating a dataset and bimodal image fusion, and enhances and optimizes the YOLOv8 
network architecture, particularly in terms of improving the capability to detect small target 
weeds and locating their meristem. The weeding robot's control system, comprising the flow 
design of the control system and the introduction of the laser galvanometer system, is designed 
in the third section. The fourth section carries out the field experiment and analyzes the 
comprehensive experiment results. The fifth and final section provides a summary of the study's 
primary findings as well as recommendations for future research directions. 

 
Materials and Methods  

In order to realize the systematic implementation of precise weeding by combining deep 
learning object detection model with laser weeding technique, this study will tackle aspects such 
as image data set creation, dual-mode image fusion, target detection model construction and 
improvement to improve field weed detection performance. After that, field tests of laser weeding 
will be conducted to confirm the   viability of weed detection by laser weeding method and dual-
mode image fusion, as well as hardware construction and model deployment of the laser weeding 
robot. The overall process of this study is shown in Figure 1. 

 
Crop and weed detection based on YOLOv8 
Data acquisition and dataset creation 

Two weed image datasets are employed in this study. The first one is the German Bonn Beet 
dataset, a dataset of beet images that is publicly available (http://www.ipb.uni-
bonn.de/data/sugarbeets2016/) and takes the data set as the pre-training of the image. The second 
type of data set is the data set taken by the research group in the corn field of Kexin Agricultural 

http://www.ipb.uni-bonn.de/data/sugarbeets2016/
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Base, Xiqing District, Tianjin on July 10, 2023, using Intel realsense camera D435i (Intel, USA) 
at a fixed height. The dataset has fewer images and more unstructured factors in the complex field 
environment. In addition, the light intensity is strong and there is a large interference during 
shooting. The research carried out shading processing on the image shooting device, and used 8 
fill lights to manually fill the light to ensure the shooting quality of the data set. In order to obtain 
a large amount of detection data of laser weeding robot in the field, image acquisition was 
conducted from the human perspective and the height consistent with the visual detection system 
of laser weeding robot. The depth camera was used to shoot vertically down 90°, which is the 
normal configuration of field weeding. At the same time, the video stream information of weeds 
and plants is collected, and images can be extracted to enrich the data set. Due to the limited 
amount of data in the second dataset images, the Beet dataset from Bonn, Germany is intended 
to be used for training the research network, and the transfer training strategy is adopted for the 
self-shot dataset to enhance the model accuracy. The dataset includes images of beet taken over 
three months at various growth stages, times, and light intensities, and the shooting angle is fixed. 
However, due to the poor quality of some images, 809 images are selected from the 2,000 images 
as the dataset for this study, resulting in 809 RGB images (1296*966) and 809 corresponding 
infrared images (1296*966). 

In this study, LabelImg software is used to manually label image frames and labels for crops 
and weeds in the images. yolo format is used as output, COCO format is adopted, and the images 
are divided into two folders: Images and Labels, with Images storing the images and Labels 
storing the txt format files of the corresponding images. Because the infrared image coincides 
perfectly with the visible image, labeling is valid for both types of images. 

 
Dual-scale image fusion 

Conventional machine vision techniques mostly rely on a single sensor to gather data; 
however, they are unable to meet precision agriculture's demands for accuracy in real time. In 
contrast, multi-modal image fusion technology can greatly enhance detection performance by 
fully utilizing complementary information from various data sources. According to the different 
processing levels, image fusion technology can be divided into three kinds: pixel-level fusion, 
feature-level fusion and decision-level fusion. Pixel-level fusion is based on strict image 
registration, which directly synthesizes each sensor's output data to create a fusion image with 
additional information. Compared with feature-level fusion and decision-level fusion, pixel-level 
image fusion has advantages in detail information richness, generalization capability, data 
stability and flexibility of image fusion strategy (Li et al., 2021). Studies have shown that the 
early stage of image fusion is particularly effective for small target detection (Cheng et al., 2023).  

Therefore, in order to enhance the information in the images, this study applies the pixel-
level dual-scale image fusion approach (Bavirisetti and Dhuli, 2016) and fuses the 809 visible 
and 809 infrared images acquired in accordance with the complexity of the field environment and 
the volume of information, resulting in 809 images with two different types of data. The visible 
light and infrared light are fused by the following steps: The pixel-level fusion method may 
introduce redundant information and noise during image fusion. First, the input visible light 
image and infrared image are filtered by means of average filtering, and the average filtering 
coefficient is 35, so as to remove random noise in the image, retain the main structure and color 
information, and obtain the base layer image. Then, by subtracting the filtered image from the 



 

 

original image, the detail layer image containing high-frequency information is obtained, and the 
difference between the two represents the detail information contained in the image. Then, the 
original image is processed by median filtering, and the median filtering coefficient is 3. Then 
the error calculation is carried out to calculate the difference between the median filtered image 
and the mean filtered image, and a small constant of 0.01 is added to avoid the division by zero 
error. The weight of each pixel is calculated based on the error, thereby merging the layers of 
detail. After the above steps are completed, the image fusion operation is carried out. First, the 
average value of the two base layers is fused, which is used as the fused base layer. According to 
the weight information calculated by the above steps, the detail layer is merged. The fused image 
is shown in step 1 of Figure 1. 

 
Data augmentation and partitioning 

Data augmentation is a key technique in the field of computer vision, which aims to enrich 
the training set by increasing the diversity and quantity of data, thereby improving the robustness 
and generalization capability of the model. In this study, we used Python for data augmentation, 
including improving image brightness, adding noise, etc., to further enrich the training set of 
weeds and crops. After data augmentation, a total of 2427 images are obtained. In order to 
evaluate the performance of the model, the enhanced dataset is randomly divided into a training 
set, a validation set and a test set at a ratio of 8:1:1. Specifically, 1,941 images are used for 
training, 242 images for validation, and 244 images for testing. 

 
Improved weed detection model based on YOLOv8 

This study constructs a deep learning network to precisely identify weeds in the field, 
utilizing the advantages of pixel-level image fusion to manage the complexity and vast amount 
of information in the field environment for accurate weed identification. In order to more 
efficiently extract weed data from the fused images, this study employs the YOLOv8 network to 
fulfill the training and detection tasks following the image fusion, in line with field real-time 
prerequisites.  

The YOLO series is widely used and has demonstrated remarkable performance in routine 
target detection tasks, especially its speed, ease of deployment, and high-precision features make 
it a popular choice in the agricultural sector. However, the performance can be limited when faced 
with challenges such as small target features, low-resolution images, blurred target details, and 
complex scenes after dual-modal image fusion. Due to the tiny size, similar color and 
characteristics of weeds and crops, and the influence of light and shadow, the YOLOv8 network's 
weed detection performance in field environments needs to be further enhanced, particularly for 
weed detection and localization in the maize seedling stage.  

To solve the above problems, we choose the YOLOv8 network as the foundational network 
framework, improve the YOLOv8 network by incorporating the Swin-transformer module, and 
employ the Slim-neck module to boost the neural network's effectiveness and performance. The 
converged network structure, as shown in Step 2, is depicted in Figure 1. YOLOv8 is composed 
of the backbone network, neck network and detection head. The neck network and detection head 
forecast the boundary box and label of the object in the feature map, while the backbone network 
is in charge of extracting image features from the input image. In order to improve the efficiency 
of weed detection in the field, the minimum weight model of YOLOv8 is selected for pre-training. 



 

 

 
Swin-transformer network 

As shown in step 2 in Figure 1, in particular, we replace YOLOv8's original backbone with 
Swin-transformer's backbone. The introduction of the Swin-transformer module aims to improve 
the network's processing capability for small target features, low-resolution images, blurred target 
details and complex scenes after dual-mode image fusion, so as to improve the detection 
performance of weeds in the field. We will perform a comprehensive performance comparison of 
the improved network to verify its performance improvement.  

Swin Transformer, as a windowing multi-head self-attention module, has a similar image 
feature extraction capability as convolutional neural networks (CNNS). As a result, it can serve 
as the backbone network needed to successfully complete the target detection task. The input 
image is first divided into multiple small blocks by the PatchEmbed module, and these blocks are 
then embedded in the high-dimensional vector. SwinStage includes the Patch Merging module 
and multiple Swin Transformer Block modules, and calculates the self-attention of multiple small 
blocks by employing the hierarchical attention mechanism. MLP is then used to process the 
output and extract higher level features. The PatchMerging module creates a new vector by fusing 
the adjacent small blocks to form larger chunks. The input is effectively subsampled n times by 
the formula (H/n) x (W/n) x (2nC), where H, W, and C in step 2 of Figure 1 represent height, 
width, and channel depth, respectively. 

Lastly, the SPPF module is used for feature processing, which can effectively extract multi-
scale features of the image. Consequently, the addition of the Swin transformer module, which is 
effective at detecting small targets, is chosen to increase the precision and speed of weed 
detection. 

 
Slim-neck module 

In this study, the backbone network of YOLOv8 is optimized to improve its target detection 
ability. Then, the Slim-neck module is introduced to lightweight the Head layer of YOLOv8. This 
mainly consists of GSconv, GS bottleneck and VoV-GSCSP modules, which are introduced to 
improve the ability of feature fusion and processing, so as to improve the detection accuracy of 
small target weeds.  

The introduction of the GSConv module is to solve the problem of predictive computing 
speed in the convolutional neural network and decrease temporal complexity, The model is shown 
in Figure 2. The GS bottleneck module is used to enhance nonlinear expression and information 
reuse. VoV-GSCSP module is a new lightweight model, which is a cross-level partial network 
built by one-time aggregation and consists of the widely used lightweight network structure VoV 
Net and CSP Net, The model is shown in Figure 3. By using the VoV-GSCSP module in place of 
the original residual structure C2f in the Head layer, the network model's lightweight nature is 
achieved, and the computation cost is significantly decreased. At the same time, this improvement 
maintains the accuracy of the network model to a certain extent and fulfills the detection criteria. 
This structural improvement can achieve the lightweight of the model and guarantee the accuracy 
of the detection.  

 
 
 



 

 

Model training environment and training methods 
In order to achieve more accurate target detection, this research selects a deep learning 

framework based on PyTorch architecture for image processing and model training. The 
experimental environment is configured as follows: Python version 3.8, CUDA 11.7 is used for 
parallel computing, and cuDNN 11.0 is used as a GPU acceleration library. The experiment ran 
on a Windows 11 operating system with hardware configurations including an NVIDIA RTX3050 
GPU (4GB) and an Intel (R) Core (TM) i5-12500 (2.7GHz) CPU. In the network training process, 
the number of training rounds is set to 200, the initial learning rate is set to 0.01, 16 sample graphs 
are randomly selected for each batch, the SGD dynamic gradient descent method is adopted, and 
the model momentum parameter is set to 0.937.  

Furthermore, in order to accurately identify weeds in corn fields, this study employs a 
transfer learning technique to transfer the pre-trained model weights to actual field detection 
tasks. Due to the challenge of obtaining large amounts of annotated data in specific agricultural 
environments, transfer learning provides a solution that allows us to significantly minimize the 
amount of annotated data required by utilizing pre-trained models on huge datasets.  In addition, 
as the model has already acquired many useful features on the source task, transfer learning can 
also help shorten training time and improve model performance when the target task has a small 
amount of data. The pre-training of the model on the source task allows it to acquire more broadly 
applicable features that can improve its performance on the target task. 

 
Evaluation indicators 

In order to comprehensively evaluate the performance of our proposed Swin-T-
YOLOv8+Slim neck model in weed detection tasks, we use multiple evaluation indicators to 
verify its effectiveness. 

Firstly, we adopt average accuracy（map@0.5）as the main evaluation indicator. map@0.5 
is an important evaluation metric for object detection algorithms, which measures the average 
accuracy of the model at a threshold of Intersection over Union (IoU) of 0.5. The mAP value is 
obtained by calculating the area under the Precision Recall curve, and the higher the mAP value, 
the better the detection performance of the model. Calculation of mAP requires Precision and 
Recall of model training samples, as shown in formula (1) and (2): 

 

                                                                         (1) 

  (2) 

 

In the above formula, TP is True Positives. If the prediction result is True (pair), the true 
value is Positives (positive example) and the model considers them as Positives (positive 
example). FP is a False positive example, the prediction result is False (wrong), the true value is 
Negative (Negative), the model considers it to be Positives (positive), FN (false negative) 
indicates that the target has not been correctly detected. 

By calculating the area below the accuracy-recall curve (P-R curve) formed by the ordinate 
Precision and the abscissa Recall, the average precision nAP of the target category can be 
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obtained, as shown in formula (3) : 

  (3) 

mAP can be obtained by averaging the average accuracy of n categories, as shown in formula 
(4): 

  (4) 

Where: n is the total number of categories in the training sample dataset, and i is the current 
category number. 

These indicators can provide us a basis for further model optimization by giving us a more 
thorough understanding of the model's performance in weed detection tasks.  

 
Ablation experiment 

In order to verify the efficacy of our dual-mode weed detection and the improved Swin-T-
YOLOv8+Slim-neck model, we use this dataset to compare the results with those of the single-
mode training. As shown in Table 2, we select a variety of parameters for comparison to fully 
evaluate the performance of the model. Specifically, we compare the YOLOv8 model with RGB 
and NIR images as inputs, the YOLOv8 model with RGB and NIR image fusion, and our 
proposed Swin-T YOLOv8 model. Through contrastive analysis, we verify the effectiveness of 
bimodal image fusion and the performance of the improved network model. 

The experimental data are shown in Table 2. Three experiments were conducted for each 
model adopted in the table, and the result of one of the best results among the three experiments 
of each model was used as the representative parameter of this experiment. The results indicate 
that the improved Swin-t YOLOv8 mAP has a higher score (0.9553) than the four different types 
of the unimproved YOLOv8 network (dual-mode, RGB single-mode, and NIR single-mode) 
when compared to the original network. The dual-mode training results of the improved Swin-T-
YOLOv8+Slim-neck module are improved by 0.5% compared with Swin-T-YOLOv8 network 
dual-mode accuracy, 2.7% compared with YOLOv8 network dual-mode accuracy, 6.7% 
compared with RGB single-mode accuracy, and 5% compared with NIR single-mode accuracy. 
Furthermore, in terms of detection accuracy index, the improved Swin-T-YOLOv8+Slim-neck 
dual-mode improves by 0.4% compared with Swin-T-YOLOv8 network dual-mode accuracy, 
8.5% compared with RGB single-mode accuracy, and 10.4% NIR single-mode accuracy. In terms 
of Recall value, the parameter value of the improved Swin-T-YOLOv8+Slim-neck model also 
performs the best, reaching 92.0%. Compared with the Swin-T-YOLOv8 network, the dual-mode 
accuracy is improved by 0.5%, and compared with the original YOLOv8 network and the fused 
image, the accuracy is improved by 7.4%. Compared with RGB and NIR, the single-mode 
increases by 3.7% and 8.1% respectively. In terms of FPS, the improved Swin-T-YOLOv8+Slim-
neck model and the single-mode NIR model perform best, reaching 120.The following Figure 4 
shows the comparison of the training process of multiple models mAP0.5 and precision on the 
extended data set. 

The experimental comparison is shown in Figure 4. According to the data in Figure 4 (a), 
the improved Swin-T-YOLOv8+Slim-neck model has great advantages compared with single-
mode NIR and RGB images, and the accuracy of the network model without improvement using 
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fusion images is further improved. At the same time, it can be seen from Fig.4 (b) that the 
improved Swin-T-YOLOv8+Slim-neck model has better performance in stability and accuracy 
values. The effectiveness of our improved Swin-T YOLOv8 model for weed detection in complex 
field environments was verified. At the same time, these results also highlight the advantages of 
dual-mode image fusion and Swin-T-YOLOv8+Slim-neck model improvement in improving 
detection performance. 

 
Detection and extraction of meristem position in weeds 

Laser weeding technology is a method of using a high energy laser beam to accurately 
irradiate the growing point of weeds, and its purpose is to destroy the cell structure of weeds so 
as to achieve the effect of eliminating weeds. Determining the location of the weeds' growing 
points is crucial after weeds and crops have been identified (Marx et al., 2012). The early growth 
of a weed depends mainly on the continuous division and differentiation of its meristem cells, 
which are mainly concentrated in the growing points of the weed, such as the stem tips and root 
tips. However, laser irradiation cannot directly affect root tips because they are typically found 
beneath the soil. Thus, laser weeding technology is mainly aimed at the stem tip of weeds. 

In this study, the weed is eliminated by irradiating the growing point of the weed stem, and 
image processing technology is used to precisely extract the location of the weed stem's growing 
point. Only by accurately locating the growing point of the weed can we guarantee that the laser 
irradiation can destroy the meristem of the weed to the greatest extent so as to effectively 
eliminate the weed. 

There are three steps in the process of weed detection: First, we use the two-scale image 
fusion method to fuse the real-time visible and infrared images; Second, we use the improved 
Swin-T-YOLOv8+Slim-neck network to detect crops and weeds, obtaining the classification and 
location of weeds. Finally, the location of weed meristem is determined. Since weeds are typically 
distributed symmetrically in their young stage, we determine the central location of weeds by 
calculating the geometric center of the detected weed boundary box (as shown in Figure 5). This 
approach has a low computing complexity and minimal resource consumption, and it greatly 
improves laser weeding stability and accuracy. At the end, the calculated geometric center 
position is taken as the laser irradiation target point, as shown in step 3 in Figure 1. 

 
Statistical experiment 

To evaluate the efficiency of detection and laser irradiation of weed meristem using an 
automated laser weeding robot under field conditions prior to field trials. The experiment was 
carried out between five different maize rows, and the number of weeds in each row was different 
to meet the differences of field environment. 

The collected data included the total number of weeds per row, the number of weeds 
effectively detected, and the number of effective weed meristem irradiated by the effective laser. 
The accuracy of weed detection and the efficiency of laser irradiation of weed meristem were 
calculated. The accuracy rate is calculated by dividing the number of weeds effectively detected 
by the total number of weeds, and the efficiency is calculated by dividing the number of weeds 
successfully irradiated by the laser into the number of weeds effectively detected. 

 
 



 

 

Weeding robot control system 
Software and hardware settings of the control system 

The robot mobile platform is the carrier of two-mode weed detection and laser weed control. 
As shown in step 4 of Figure 1, based on prior research experience (Bawden et al., 2017), an 
electric-powered mobile platform for weeding robots is developed, which can be remotely 
controlled by an operator. The scalable platform is designed to conform to the actual growth width 
of the plant, and the distance between the two rounds can be adjusted at any time to adapt to the 
working conditions of varying plant distances. 

The robot mobile platform, the vision inspection system, and the laser control system make 
up the three primary components of the mobile platform. The mobile platform is composed of 
two sides of the walking device, the overall body frame and the suspension device. To increase 
turning flexibility and reduce turning radius, the mobile platform is driven by two hub motors, 
the hub motor model SVD48V30A, which are located on the front wheels. The rear wheel is 
universal, and the platform steering is realized by the differential rotation of the two driving 
wheels. The overall drive system is powered by a ternary lithium battery (48V35Ah). The visual 
inspection system is responsible for the real-time detection and identification of weeds and crops 
in the field. The on-board laptop computer and depth camera D435i make up the visual inspection 
system, which is in charge of processing weed information and weed detection. It is possible to 
capture both visible and infrared images with the Intel Realsense camera D435i (Intel, USA). The 
camera has a focal length of 1.93 mm, and its parameters include maximum resolution, visible 
light sensor resolution and frame rate, and infrared resolution and frame rate. More specifically, 
the visible light sensor has a resolution and frame rate of 1920× 1080, 30 FPS (maximum), and 
the infrared resolution and frame rate of 1280× 720,90 FPS (maximum). The camera's shooting 
Angle is fixed, and the preset camera height is 46 cm. Two-modal image fusion technology and 
deep learning algorithm are used to improve the accuracy and efficiency of weed detection. The 
STMF407ZGT6 microcontroller serves as the primary control chip in the laser control system, 
enabling drive control of the laser actuator's data information and realization of analog-to-digital 
conversion. The controller is built around the ARM Cortex-M4 core, equipped with large 
capability flash and SARM, which performs well in digital signal control, image processing and 
other areas, and can adapt to the needs of field weeding. In addition, the laser control system also 
includes 15kHz AT15 scanning galvanometer, 405nm laser emitter, laser optical path layout 
board, laser driver, DAC8563 module, 220V power supply. 

An automobile computer with the Ubuntu 20.04 operating system serves as the top 
computing device employed in this study, and its core control system is ROS (Noetic) installed 
in the operating system. The accuracy and real-time laser weeding are guaranteed by ROS, which 
communicates with each node through the way of publishing/subscribing messages, and each 
node is independent of each other, with a high degree of flexibility and scalability. Additionally, 
we may finish the fine-tuning of the Settings by making adjustments to the ROS system. 

 
Control system flow 

While the laser weeding process is automated, the operator moves the robot mobile platform 
remotely during the weeding operation phase. As shown in Figure 6, based on the improved Swin-
T YOLOv8 network model, the trained model file (.pt file) is deployed offline to the ROS system 
for the prediction of crop and weed images in the field. The real-time image data acquired by the 



 

 

camera is transmitted to the ROS system via USB, and the visible and infrared image information 
is released in the form of color/image_raw and infra1/image_raw topics. 

A node named yolov8 is constructed for target detection. This node subscribes to the topic 
of taking and publishing pictures and receives image information in real time. Using the dual-
scale image fusion method, the visible and infrared images are fused, and the fused images are 
then fed into the Yolov8 detection module. The weights obtained by training are used to predict 
the detection frame containing the type and location of crops and weeds. The geometric location 
center of the detection frame is computed based on the obtained weed detection frame, and the 
location information of the obtained weed center is published in the detection topic. Subsequently, 
a node named center_listener is established in order to subscribe to the topic and forward the 
received messages over the serial port. After receiving the messages from the serial port, the 
STM32 device processes these messages through the internal program, and transmits the 
processed signal to the laser control system through the DAC8563 module. Finally, the laser 
control system performs accurate weeding operations based on these signals. 

When the geometric position center of the weed is detected, the laser polarization device 
aligns itself with the geometric position center of the weed. The main steps are as follows: (a) 
Receive the images taken by the depth camera D435i and fuse the resulting visible and infrared 
images; (b) Display the improved Swin-T YOLOv8 network to detect weed and crop 
classification results and detection boxes; (c) Calculate the geometric location center of the weed 
boundary box to determine the meristem location of the weed; (d) Publish the central location 
information of weeds through the node to the serial port; (e) The TTL-USB module receives the 
aforementioned data from the serial port; the STM32F407ZGT6 microcontroller processes it and 
forwards it to the DAC8563-SPI module, which then transmits a signal to control the laser 
galvanometer's deflection; (f) After controlling the laser scope deflection of one weed unit, go to 
the next weed location and repeat the above operation. Figure 7 below shows the ROS system 
control flow chart and working principle diagram. 

 
Design of weed detection nodes 

In our automatic weeding system, a ROs-based multi-node architecture is designed to 
achieve efficient communication and collaboration between components. First, create a ROS 
topic called weed_detection for communication between the depth camera and the ROS system. 
Offline training files, tag files, and API libraries will all be covered in this topic. 

Next, start the yolov8_ros node and run the yolo_v8.py file, which is responsible for 
receiving images from the depth camera. This node subscribes to the topic 
/camera/color/image_raw and /camera/infra1/image_raw to obtain the image information 
released by the D435i camera and completes the fusion of dual-mode images. The pre-trained 
Swin-T YOLOv8 weight model (.pt file) is used to detect and process the image. The detected 
image information is made available to the yolov8/center topic, which contains the geometric 
location and center location information of several weeds. The center_listener node is used to 
subscribe to the topic and simultaneously provide data to the serial port. Through the 
collaboration of multiple nodes and topics, the ROS system enables the completion of the entire 
process, from image acquisition by depth camera to weed detection using the improved model, 
then to publishing the detection results and processing the central information of weeds, as shown 
in Figure 8. 



 

 

 
Laser control node design 

In the automatic laser weeding system, the laser control node receives the central location 
information of multiple weeds from the serial port: Through the use of a USB serial port, the ROS 
system communicates with an STM32 microcontroller, which receives and processes the 
information in real time. The STM32 microcontroller then controls the output of the digital analog 
converter (DAC) in accordance with these data, and the DAC converts the information into a 
voltage signal, thus controlling the rotation of the laser galvanometer. The laser control flow chart 
is shown in Figure 9 below. 

 
Laser galvanometer device 

The laser weeding system mainly produces laser by laser emitter. The core components of 
the system include a 15kHz AT15 scanning galvanometer, a 405nm laser transmitter, a laser 
optical path layout board, a laser driver, and a DAC8563 module with an SPI interface. 

Field weeding requirements can be addressed by the 15kHz AT15 scanning galvanometer, 
which can swiftly and precisely alter the direction of the laser beam to cover the entire field within 
a -20° to 20° polarization angle range. The DAC8563 module is responsible for converting the 
incoming digital signal into an analog signal to control the movement of the galvanometer, and 
this conversion process enables the system to precisely control the direction of the laser beam. To 
guarantee precise laser transmission, a stable laser optical path is constructed using the laser 
optical path layout board. The laser driver provides a high voltage to the laser galvanometer 
device, allowing it to control the galvanometer rotation in response to voltage variations. In the 
process of laser weeding, when the weeding device moves above the weed, the system first 
controls the laser scope to deflect a specific Angle according to the position information of the 
weed meristem. Next, it activates the laser emitter to emit light, adjusting the laser's position 
irradiation based on the real-time information received, allowing for the precise removal of each 
weed. 

The hardware connection of the laser weeding device is shown in Figure 10 below. 
 

Results and Discussion 
Control of robot vision system 

The mismatch of relative location information between the visible image and the infrared 
image captured by the depth camera is a concern. To address this issue, a feature-based image 
registration method is used to align the infrared image with the visible image. This guarantees the 
consistency of the weed location data obtained from the visible and infrared images. The camera 
is calibrated to make sure the laser scope can accurately illuminate the location of the weed 
meristem that the depth camera detected. First, 20 sets of data are measured at the location of the 
laser irradiation using a calibration plate, which contain the location of the calibration board in 
both the image coordinate system and the world coordinate system. The transformation 
relationship between the image coordinate system and the world coordinate system is computed 
and the internal and external camera parameters are derived by comparing these positions in the 
two coordinate systems. Through these parameters, the weed meristem locations identified by the 
depth camera can be accurately mapped to the irradiation location of the laser galvanometer to 
achieve accurate laser irradiation. 



 

 

 
Laser control system regulation 

Since precise laser control is essential for eliminating weeds, the magnitude of the different 
voltage amplituaries in the laser polarization device of the laser weeding robot is collected. Since 
the location of laser irradiation is related to the height from the ground, the height of the laser 
polarization device was set to 50cm and the height from the target weed was 46cm to analyze the 
error relationship between the output voltage and the location of laser irradiation. The 
experimental results show that when the output voltage reaches 4V, the laser galvanometer 
reaches its maximum deflection Angle, that is, 20°. In addition, the experiment also shows that 
the deflection Angle of the galvanometer decreases linearly with the decrease of voltage. Since 
the relation between voltage input and deflection Angle of galvanometer is definite, the relation 
between deflection Angle and position distance is obtained by measuring the position of laser 
irradiation at different angles. The laser irradiation distance is compensated for the set voltage 
value, and by lowering the corresponding voltage value, the relationship between the corrected 
distance and the voltage output is obtained. 

 
Field trials of laser weeding robots 

The built laser weeding robot was tested in a standard field, and the experimental results 
were collected and classified. The field experiment was carried out in the maize planting field of 
Kexin Agricultural Base in Jinghai District, Tianjin. The experimental conditions were as follows: 
maize seedlings and weeds existing in the three to five leaf stage of maize were planted in flat 
cropping mode, with row spacing of 60cm, plant spacing of 25cm, and crop height of 20-30cm. 
The weather is fine, 28~35 degrees Celsius, the southeast wind is 2, and the precipitation of this 
month is 0 as of the experiment day. The camera is mounted in the center of the platform chassis 
through the jig, 46cm from the ground. Because the field light intensity is too strong, so the use 
of shading cloth to reduce the light to meet the requirements of the experiment. The field test of 
the weeding robot is shown in Figure 11. The platform is built with 40×40 European standard 
aluminum profiles. The front wheels are driven by wheel hub motors and powered by ternary 
lithium batteries. The rear wheels are equipped with universal wheels, which work together with 
the front wheels. Steering is achieved by the differential rotation of the front wheel hub motor 
controlled by the SVD48V50A motor driver. This paper studies the use of manual control to 
adjust the direction through the dual drive remote control and its signal receiver. The built laser 
weeding robot was tested in a standard field, and the experimental results were collected and 
classified. The field experiment was carried out in the maize planting field of Kexin Agricultural 
Base in Jinghai District, Tianjin. The experimental conditions were as follows: maize seedlings 
and weeds existing in the three to five leaf stage of maize were planted in flat cropping mode, 
with row spacing of 60cm, plant spacing of 25cm, and crop height of 20-30cm. The weather is 
fine, 28~35 degrees Celsius, the southeast wind is 2, and the precipitation of this month is 0 as of 
the experiment day. The camera is mounted in the center of the platform chassis through the jig, 
46cm from the ground. Because the field light intensity is too strong, so the use of shading cloth 
to reduce the light to meet the requirements of the experiment. The field test of the weeding robot 
is shown in Figure 11. The platform is built with 40×40 European standard aluminum profiles. 
The front wheels are driven by wheel hub motors and powered by ternary lithium batteries. The 
rear wheels are equipped with universal wheels, which work together with the front wheels. 



 

 

Steering is achieved by the differential rotation of the front wheel hub motor controlled by the 
SVD48V50A motor driver. This paper studies the use of manual control to adjust the direction 
through the dual drive remote control and its signal receiver. 

In the operating state, the depth camera is installed in the abdomen of the mobile platform 
through the connector, and the laser device is installed in the tail of the mobile platform. Weeds 
and crops first pass through the field of view area of the camera, and then reach the treatment 
area of the laser weeding device, detect and obtain the location of weed meristem, and guide the 
laser weeding device to treat the corresponding area. In addition, the proficiency of a laser 
weeding robot's identification abilities is assessed. In this paper, a "stop-and-go" moving mode is 
used to control the robot walking, and the robot stops moving when controlling the laser weeding. 
In order to improve the efficiency of laser weeding, it is necessary to avoid the problem that the 
laser polarization device and moving platform can not accurately point to the center of the weeds 
when they are moving. The laser polarization device is controlled at a distance of 50cm from the 
ground and 46cm from weeds. The main body of the image acquisition device is an aluminum 
alloy rectangular frame composed of 40×40 European standard profiles. In order to reduce the 
influence of weed exposure factors caused by direct sunlight and strong light on the weeding 
effect, a blackout screen is used to shield the camera and laser weeding components to improve 
the accuracy of weed detection. The research uses a blackout cloth to cover the frame and form a 
black box to isolate the sunlight in the identification area. The black box opens front and back to 
pass through the crop and weed plants, and is equipped with 8 sets of LED lights to provide a 
stable light source. 

 In the middle area of the light source, the D435i depth camera is installed as the core 
component of the image acquisition device. The frame length is 180cm, the width perpendicular 
to the forward direction is 54cm, and the camera field of view is 36×46cm. The depth camera, 
D435i, captures images with a resolution of 384x480 pixels and a frame rate of about 20FPS. 
According to the results of statistical experiment Table 3, under field conditions, the total number 
of weeds in the detection area was 206, the number of effective detected weeds was 170, the 
accuracy rate of weed detection was 82.1%, the total number of effective detected weed meristem 
locations was 122, and the accuracy rate of effective simulation laser was 72.3%, which was 
lower than the accuracy of laboratory training results. On the one hand, large random interference 
has a high impact on model detection, on the other hand, ground fluctuation reduces the 
recognition and laser aiming accuracy of the weeding robot. which is lower than the accuracy of 
the training results in the lab. Finally, due to the fluctuation of speed, the laser could not be 
irradiated in time after the detection of weeds, resulting in a low laser accuracy. Large random 
interference has a higher effect on model detection on the one hand, but ground fluctuation 
reduces the identification and laser pointing accuracy of weeding robots on the other. With its 
high detection performance and ability to eliminate interference from field environmental factors, 
the Swin-T yolov8 detection model based on image fusion can increase the accuracy of weed 
detection and fulfill the demands of precise laser control and field irradiation.  

Therefore, in order to more clearly illustrate the irradiation position of laser weeding, three 
field test images with superior effects were chosen to display. The experimental images of the 
weeds being exposed to radiation during the field weeding procedure using a laser weeding robot 
are shown in Figure 12 below. 

 



 

 

Conclusions and Future Prospects 
In order to address the issues of low weed detection accuracy and poor anti-interference 

strength caused by environmental factors in field circumstances,  as well as to encourage the 
employment of multi-modal image fusion and laser weed control technology in precision 
agriculture weed management, this study proposes a laser weed control robot based on dual-mode 
fusion weed detection. The three primary components of the research are the fusion of infrared 
and visible images, the improvement of the YOLOv8 network model structure, and the control of 
the laser polarization device. 

The two-mode fusion technique of fusing visible and infrared images adopts the two-scale 
fusion method of pixel-level fusion to fuse the two. The experimental findings demonstrate that 
the method can significantly increase the accuracy of weed detection and improve the adaptability 
in various field scenarios when compared to the results of image training in single mode. We 
improve the YOLOv8 model to increase the accuracy of weed detection for small target weeds. 
The outcomes demonstrate that the improved Swin-T-YOLOv8+Slim-neck has higher accuracy 
in detecting small target weeds with a weed detection efficiency of 96.0%. On this basis, this 
study designs and builds an intelligent laser weeding robot, which deploys image fusion, weed 
detection, intelligent control and other technologies. Through machine vision detection and 
positioning of the geometric position center of weeds, an efficient laser weeding method is 
realized. Under field conditions, the accuracy rate for weed detection is 82.1%, and the effective 
simulation rate for laser removal is 72.3%. The experimental results show that the application of 
the above method can accurately point the location of weed meristem, solve the problem of low 
precision and poor robustness of weed detection by various factors, and provide an advanced 
method for field target detection. In addition, the laser weeding method also provides an optional 
method for field cleaning and precise weeding. 

This method meets the requirements of precision and environmental protection in field 
weeding. In recent years, the research of multimodal image fusion and laser irradiation 
technology has been deepening, and the technology has gradually become mature and stable. 
There is a growing demand for such technologies in the agricultural sector, especially in smart 
and precision agriculture. In the field of agricultural weeding commercialization in the future, 
multi-mode laser weeding robots will certainly promote the process of intelligent weeding 
technology. 

The laser weeding robot still has certain limitations, despite the improved model's partial 
success in achieving high precision: it lacks a comprehensive robot system that integrates 
detection, navigation, and control, thus some manual involvement is still necessary. In addition, 
the laser control device subject to experimental conditions can also improve the precision and 
efficiency of weeding. Subsequent research endeavors may explore the incorporation of cross-
modal imagery to address the challenges involved in weed detection more thoroughly. 
Simultaneously, when the impact on weed detection efficiency is minimal, we can combine the 
data that comprehensively conveys weed features in order to enhance weed detection efficiency. 
A laser control system with adjustable laser energy is studied to emit different laser energies in 
different weeds and different growth periods to remove weeds more efficiently. 
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Figure 1. Overall flowchart of the study 

 

Figure 2 GSConv Schematic Diagram 



 

 

 

Figure 3 VoV-GSCSP Structure Diagram 

 

(a) mAP0.5 comparison 



 

 

 

(b) Comparison of precision values 

Figure 4 Comparison of the training processes of multiple models mAP0.5 and 

precision on the extended dataset 

 

Figure 5 Weed meristem labeling process 



 

 

 
Figure 6 Overall control flow chart 

 
Figure 7 ROS system control flowchart and working principle diagram 

 



 

 

 
Figure 8 Detection Node Design 

 

Figure 9 Laser control flowchart 



 

 

 
Figure 10 Laser Hardware Connection Diagram 

 

Figure 11 Field images of laser weeding robot 

 



 

 

Figure 12 Location diagram of weed meristem of three different weeds irradiated 

by laser in the field 

Table 1 Hyperparameter settings 

Hyperparameter settings value 

Batch size 16 

Epochs 200 

Initial Learning rate 0.001 

Momentum 0.937 

Table 2 Comparison of parameters between YOLOV8 and the improved Swin-T-

YOLOv8+Slim neck under different modes 

Method Type Precision Recall mAP0.5 FPS 

Swin-T 

YOLOv8+Slim-neck 
RGB+NIR 0.940 0.920 0.960 120 

Swin-T 

YOLOv8 
RGB+NIR 0.936 0.915 0.955 115 

YOLOv8 RGB+NIR 0.814 0.846 0.933 114 

YOLOv8 RGB 0.802 0.883 0.893 112 

YOLOv8 NIR 0.842 0.839 0.910 120 



 

 

Table 3 Statistical experiments of weeds irradiated by laser 

Corn 

row 

number 

Number 

of weeds 

Number of 

weeds 

effectively 

detected 

Average 

accuracy of 

weed 

detection 

Effective 

monitoring 

sites of weed 

meristem 

Effective 

laser 

removal 

rate 

1 52 

170 82.1% 

31 

72.3% 

2 41 27 

3 31 18 

4 38 24 

5 44 22 

 

 


