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Abstract 
A major issue in several farming areas of the Mediterranean basin consists of drought and 
salinity stress. This stress is mainly due to a steady exposition of warm daily temperature and 
heatwaves, moreover with inevitable irrigation with saline water. Therefore, detecting the 
stress is essential to minimise significant yield loss and preserve agricultural sustainability. In 
this context, remote and proximal sensing can play a crucial role in allowing fast, not 
destructive, extensive, and reliable assessment of crop status. In this work, the effectiveness of 
several multispectral indices in detecting salinity and water stress in tomato plants, grown 
under controlled green-house conditions, was investigated. Three different classifiers (fine tree 
model, linear discriminant model, and linear support vector machines model) were used to 
verify whether, and the extent to which, the adopted multispectral indices can be adopted to 
identify a stress condition of the tomato plants. In the experimental campaign, the stress 
occurrence on tomato plants was assessed on the base of a set of ecophysiological 
measurements, such as transpiration, stomatal conductance, and photosynthesis rate. 
Obtained results showed that a classification model based on linear support vector machines, 
exploiting the combination of Photochemical Reflectance Index and the Chlorophyl Index, can 
detect drought and salinity stress in tomato plants with an accuracy higher than 94%. 
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Introduction 
The Mediterranean Basin has been recognised as one of the most productive horticultural 
areas, especially for tomatoes (Solanum lycopersicum L.). Indeed, tomato cultivation has 
increased three-fold from the last 50 years, reaching in the European Union (EU) five million 
hectares in 2015 with more than 85% of tomatoes produced by the Mediterranean members 
(Eurostat, 2019). Among the non-EU Mediterranean countries, Turkey and Egypt are the most 
tomato producers with an average production of 10.1 and 7.3 million tons respectively, thus 
resulting in the fourth and fifth tomato producers in the world (FAOSTAT, 2019). 
Because of climate change, some areas of the Mediterranean Basin are increasingly exposed 
to warm daily temperatures and heatwaves, thus limiting vegetable production (Cramer et al., 
2018; Linares et al., 2020; Tramblay et al., 2020). Therefore, within the next few years, drought 
stress is likely to become an essential issue for Mediterranean farmers, impacting the yield and 
productivity of the crop (Liu et al., 2016). Also, in some Mediterranean coastal regions, salinity 
stress has been receiving much attention due to the unavoidable use of saline water for 
irrigation, which causes significant yield loss and important modifications in the soil 
physicochemical properties promoting its degradation (Paranychianakis et al., 2005; Aragüés 
et al., 2011). 
Drought and salinity stress are involved in limiting plant growth and yield, mainly due to loss 
of turgor, impaired enzymatic activity, stomata closure and consequent less carbon intake in 
plants, downregulation of photosynthesis, damage in the photosynthesis machinery caused by 
Reactive Oxygen Species (ROS) increment, sodium (Na+) toxicity, and nutrient imbalance 
especially Nitrogen (NO2-) (Chaves et al., 2003; Chaves et al., 2009; Farooq et al., 2012; Ors 
and Suarez, 2017; Ekinci et al., 2018). 
One of the most valuable techniques to assess the physiological status of plants under stress is 
the measurement of photosynthesis with gas exchange systems. This technique has been 
developed and applied for several decades and considered the qualitative reference for 
photosynthetic measurements (Patono et al., 2022, 2023). In gas exchange systems, a leaf (or 
the whole plant canopy) is compartmentalised inside a cuvette, and a known airflow rate 
conveyed through the cuvette to measure CO2 and H2O concentration of air entering and 
leaving the cuvette. From the data obtained in gas exchange systems, the most common 
measurements that can be evaluated are net photosynthetic rate or assimilation rate (A), 
transpiration rate (E), stomatal conductance (Gs) and CO2 concentration inside the leaf 
substomatal cavity (Ci). The rate of net fixed moles of CO2 and of H2O exchanged between the 
leaf and the atmosphere are respectively A and E. Stomatal conductance, which represents 
how easily vapor can pass through stomata, is calculated as the ratio between E and the vapor 
pressure deficit (VPD). VPD is the difference between the saturation water vapor pressure at 
the temperature and pressure of the atmosphere at which plant is exposed and the actual water 
vapor pressure of the atmosphere at the moment of measurement. The CO2 concentration 
inside the leaf, if Gs and the external concentration of CO2 remain constant, reflects the CO2 
flux from outside to the site of carboxylation (von Caemmerer and Farquhar, 1981). 
However, there are many challenges that do not allow an extensive use of gas exchange 
systems in precision agriculture management frameworks; these include high investment costs, 
time needed to ensuring good quality measurements, difficulties to scale photosynthetic 
parameters from few leaves to the whole plant, and difficulty in automating data acquisition 
(Siebers, 2021). In this context, remote sensing based on optical sensors can play a crucial role 
in allowing fast, not destructive, extensive, and high spatial and temporal resolution 



measurements of crop status with respect to standard photosynthetic methods, especially in 
greenhouses and open fields (Usha and Singh, 2013; Katsoulas et al., 2016). Optical sensors 
usually detect canopy transmittance (Tantinantrakun et al., 2023), reflectance, or emissivity 
(Lioy et al., 2021) signals, from which both agronomic information and physiological traits 
about the crop can be extracted. Multispectral cameras are commonly employed to detect 
canopy reflectance. The intensity of the reflectance signal depends on several parameters such 
as the morphological properties of the leaves, branches and stems, light absorption by 
pigments, and plant architecture (Winterhalter et al., 2013). Since photosynthesis is a function 
of chlorophyll abundance and activity, measurement of light absorption by this pigment 
provides a link between optical remote sensing measurements and plant photosynthetic status 
(Schlemmer et al., 2013). 
Several vegetation indices have been adopted to describe crop characteristics (e.g., leaf area 
index, biomass, yield) and impact of stresses (e.g., water, nutrient, pests and diseases) using 
multispectral bands as input (Sinclair and Ludlow, 1986; Comba et al., 2019, 2020; Guidoni 
et al., 2021; Psiroukis et al., 2022). However, there are still information gaps regarding the 
relationship between the data acquired through gas exchange systems and multi-spectral 
vegetation indices. First, an integrative approach with physiological data directly assessed on 
plants is required to assess by these indices the real plant performance under stress (Usha and 
Singh, 2013). Second, previous works on multispectral-based detection of drought and salinity 
stress have been focused on the evaluation of one single stress only, without considering the 
possibility of combined stress, such as drought and salinity. Finally, it is still poorly understood 
how the multispectral parameters can be effective in standardising the early detection of the 
stress in distinct genotypes, considering their differential responses to the stress. 
The specific objective of this study is the identification of vegetation indices obtained from 
multispectral imagery that allow the classification of drought- and salt-stressed or unstressed 
tomato plants in a fast, cost effective and non-invasive way. Indeed, the use of classification 
methods based on vegetation indices has the great advantage of saving time with respect to 
the direct measurement of leaf gas exchange. 
 
Materials and Methods 
Combined drought and salinity stress 
The experimental campaign was conducted under greenhouse conditions, and tomato 
(Solanum lycopersicum L.) varieties Moneymaker, de Ramellet, ATS-048/06, Ολυμπία 
(Olympia), ECU1067 (Cherry) and Mex-104 (Cherry) were considered. Accessions were sown 
in plastic seedlings trays filled with peat and then placed in a walk-in growth chamber set at 
26 °C, 50% of relative humidity, and 100 µmol m-2 s-1 PAR. When three-week old, tomato 
plants were transplanted into square plastic pots of 13 cm height and 0.75 dm3 volume 
containing perlite; the pots were then transferred to a greenhouse. During the experimental 
period, the average temperature in the greenhouse was 25.5±3.8°C and the relative humidity 
77.0 ± 23.0 %. The environmental data were collected with a data logger (Tinytag Plus 2 - 
TGP 4500, Gemini Data loggers Ltd, Chichester, UK) placed inside the greenhouse. 
The experimental design was set up as complete randomised blocks and included 12 
conditions (6 accessions × 2 treatments), each represented by 3 replicate pots. To this aim, 36 
pots were prepared. Pots with unstressed plants were marked as 𝑇𝑢 (18 plants), while those 
with stressed plants 𝑇𝑠 (18 plants). In addition, to assess the effect of the evapotranspiration 
phenomena from the perlite soil, 6 pots without plants (3 respectively for the unstressed and 
stressed condition) were filled with perlite only. Before the combined drought and salinity 
stress treatment, which was planned to last 3 weeks, all 42 pots were saturated with water and 
drained for 24 hours, in order to let them reach common initial conditions of field capacity. 



Each pot was then connected to an automatic sprinkler system with drippers, previously 
installed in the greenhouse. Unstressed plants received 2 minutes of irrigation 4 times per day, 
while stressed plants received 1 minute of irrigation once per day. The water flow per pot was 
25 mL min-1, and the drippers functioning was daily checked for both stressed and unstressed 
lines by collecting and measuring water delivered by randomly selected drippers. 
In order to assess the effectiveness of water stress imposition, the relative transpiration 𝑇𝑅! of 
each stressed plant was evaluated once a week. The parameter 𝑇𝑅! is defined as the ratio 
between the transpiration of stressed plants and the average of the ones belonging to the 
corresponding unstressed group (Sinclair and Ludlow, 1986). More in detail, the procedure 
published in Sinclair and Ludlow (1986) to compute the relative transpiration 𝑇𝑅! of the k"# 
stressed plant is 
 

𝑇𝑅! =
𝑀𝑇𝑠!,% −𝑀𝑇𝑠!,%&'

𝑁&' ∙ ∑ ,𝑀𝑇𝑢(,% −𝑀𝑇𝑢(,%&'-)
(*'

	, (1) 

 
where 𝑀𝑇𝑠!,% and 𝑀𝑇𝑠!,%&' are the weights of the stressed pot 𝑇𝑠! on j-th day and the day 
before (j-1), respectively, while 𝑀𝑇𝑢% and 𝑀𝑇𝑢%&' are the weights of each unstressed pot 𝑀𝑇𝑢, 
belonging to the same accessions category (genotype in this case). Finally, N represents the 
number of replicates (pots) in the accessions category. In this work, Eq. (1) was modified to 
take into account two phenomena affecting the relative transpiration computation in the 
experimental campaign: (1) the perlite properties of high porosity and low water retention, and 
(2) the effect of the evapotranspiration phenomena of the soil. For the first aspect, the amount 
of water applied to pots 𝑊 and the drained water from pots 𝐷 were weighed and considered. 
For the second aspect, weights 𝑀𝑃 of pots with only perlite were also taken into account. The 
resulting 𝑇𝑅! equation was thus 
 
𝑇𝑅!

=
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where 𝑊𝑠%&' and 𝑊𝑢%&' represent the grams of water applied the day before (j-1) to stressed 
and unstressed pots, respectively, and 𝐷𝑠 and 𝐷𝑢 represent the grams of water drained from 
stressed and unstressed pots. 𝑀𝑃 are the weight of pots filled with perlite only, which were 
watered as those in the unstressed (𝑀𝑃𝑢) and stressed (𝑀𝑃𝑠) plants classes and the drainage 
also from these pots (D𝑀𝑃𝑢 and 𝐷𝑀𝑃𝑠) were collected and considered in the final calculation, 
as described before. 𝑊𝑠%&' and 𝑊𝑢%&' were measured by randomly collecting the water from 
the drippers in the appropriate day. 
In order to provide sufficient nutrients to the plants during all the experimental period, a 
fertirrigation with a standard De Kreij et al. (1997) solution was performed three times per 
week. To induce salinity stress, the water-stressed plants were fertigated with a standard De 
Kreij et al. (1997) solution, three times per week, in which 81 mM of commercial sea salt was 
dissolved, thus resulting in a final electrical conductivity (EC) of about 8 dS m-1. Commercial 
sea salt was preferred to pure NaCl salt in order to simulate seawater infiltration in the irrigation 
system as suggested by De Pascale et al. (2003). Finally, in order to monitor the perlite salinity, 
the drainages of plant pots were randomly collected, and the EC was measured with an 
electrical conductivity meter. 
 
Ecophysiological measurements 



After 3 weeks of drought and salinity stress treatments, when the average transpiration ratio 
(𝑇𝑅) and electrical conductivity (EC) of all stressed accessions was 0.31 ± 0.06 and 5.23 ± 
0.13 dS m-1 respectively, CO2 gas exchange measurements on stressed and un-stressed plants 
were performed to calculate the assimilation rate (A), transpiration rate (E), stomatal 
conductance (Gs) and CO2 concentration inside the leaf (Ci). To this aim, a GFS-3000 IRGA 
(Walz, Germany) instrument was used, which measures CO2 and H2O gas exchange between 
plant and ambient air in a controlled environment. Measurements were made on a sunny day 
between 10 am and 1 pm, and were done on three leaves for each tomato plant. For each 
measurement, a well expanded leaf of was clamped in a cuvette of 8 cm2. An air flow of 750 
µmol s-1 was maintained inside the cuvette. Temperature and relative humidity of the fluxing 
air were set to follow greenhouse condition. During the entire measurement campaign (10 am 
- 1 pm), temperature and relative humidity ranged between 20 and 24 °C, and 60 and 80 % 
respectively. The cuvette was irradiated by a GFS-3000 LED lamp at a constant light intensity 
of 300 µmol photons m-2 s-1. A waiting time of 90 s was adopted to allow instrument purge 
time and leaf acclimatisation after the leaf was clamped, thus reaching stable values of ΔCO2 
and ΔH2O. After the purge time, 30 consecutive recordings at 1 s interval were performed. The 
average value of the 30 time points was used in the gas exchange equations described in von 
Caemmerer and Farquhar (1981) to calculate the assimilation rate A, transpiration rate E, 
stomatal conductance Gs and concentration inside the leaf Ci. Stressed and unstressed plants 
were measured alternately, and, at the end of the measurements, plants were introduced in the 
multispectral images acquisition system for multispectral measurements. 
To verify the effectiveness of the induced stress conditions, the correlation between the 
measured ecophysiological measurements was investigated based on a regression analysis in 
Matlab® R2022a environment, where the best fitting curves were obtained. Specifically, the A 
and Gs measurements were plotted against the E and Ci ones respectively. 
 
Multispectral images acquisition system 
In order to evaluate vegetation indices of stressed and unstressed plants, multispectral imagery 
of each treated pot has been acquired. To this aim, a MAIA S2 multispectral camera (SAL 
Engineering, Russi (RA), Italy) was adopted, which features an array of nine sensors with 1.2 
MPx resolution. Each sensor has a dimension of 4.8 x 3.6 mm with a pixel size of 3.75 μm, 
and the spectral coverage is from 390 to 950 nm (average spectral resolution of 37 nm). Please 
refers to Table 1 for MAIA S2 spectral bands. The MAIA camera is equipped with a global 
shutter technology which allows pixels charge collection of the nine sensors to be started 
simultaneously, thus the nine images can be acquired in “one shot” with a perfect 
synchronisation among bands with a frame rate set to 1 Hz. This technical solution also avoids 
the so-called negative Jello effect that occurs when acquiring an image at a high-frequency 
rate. Moreover, the fast exposure time of the nine global shutters guarantees the absence of the 
blurring. The images were saved in a proprietary format in 12 bits. 
The MAIA camera was installed face down on the roof of a closed box having a wooden frame, 
at a relative height of 2.50 metres from the ground. The frame had a square shape with an edge 
and height of 3 and 4 metres respectively. The artificial illumination system consisted of six 
halogen lamps of 100 W each and a light diffuser. The six lamps were mounted on the roof of 
the box and a shield was installed around the MAIA camera in order to prevent possible direct 
light from the lamps to the nine sensors. The developed data acquisition system was also 
equipped with a RGB camera to automatically acquire an image of the unique identificative 
QR code applied on each pot. After the acquisition of a multispectral image of the plant, the 
system also performs a scanning procedure with a 3D sensor and a turning platform, with the 



aim to reconstruct a 3D model of the plant (not used in this work). The schematic 
representation of the acquisition system is reported in Figure 1. 
The inner side surfaces and the floor of the box were upholstered with matte white and matte 
black material respectively to avoid the shadow effect. Indeed, each pot was in the centre of 
the floor before acquiring the multispectral image. An Incident Light Sensor (ILS) was integrated 
with the MAIA camera and mounted inside the box to measure the light level for each shot in 
each band. The ILS allowed both data for correction due to light level and true reflectance 
ratios calculation to be collected. The ILS data were automatically stored into the log file 
related to the image acquisition set. 
The raw multispectral images were then processed with the MAIA images software MultiCam 
Stitcher Pro for geometric correction, coregistration and radiometric correction in order to 
obtain images in .tiff format. Four black and white chessboards, printed on A5 size paper, were 
attached to the floor of the box to help in the coregistration process. 
Each plant was placed in the middle of the box floor and both the MAIA and the illumination 
system were controlled by Matlab® script using an Arduino shield as I/O device, to menage 
automatic triggers. Considering all the steps (plant positioning in the box, acquiring images 
and plant removing), each multispectral image took about 2 minutes to be automatically 
acquired and saved. 
 
Vegetation indices 
Multispectral imaging is a powerful tool for agronomic analysis as it allows plant status to be 
monitored in a non-destructive way and with a high temporal resolution. After images 
acquisition and correction (see paragraph Multispectral images acquisition system), the images 
segmentation was performed to separate leaves from the background by using a semantic 
segmentation method in Matlab® R2022a environment based on a convolutional neural 
network (U-net) and deep learning (Comba et al., 2020; Biglia et al., 2022). Since this method 
looks at the entire set of multispectral channels, it has a higher accuracy than traditional 
methods based on a fixed threshold. After segmentation, a mask for each plant was 
automatically created to identify only the area covered by the leaves (young and developed) 
as shown in Figure 2. Then, the mask was applied to all the 9 bands of the multispectral 
imagery to extract the reflectance values of the regions of interest. 
The vegetation indices calculated and evaluated in this work for the identification of tomato 
plants under combined drought and salinity stress are listed in Table 2. The nine indices were 
selected according to literature review on applications of crops reflectance monitoring for 
drought and/or salinity stress detection (Katsoulas et al., 2016; Elvanidi et al., 2018). For each 
of the 36 nadiral multispectral images acquired, the selected nine vegetation indices were 
computed for all the pixels considered in the ROI (leaves) and then the average value was 
computed, which was considered as representative of each single tomato plant canopy. The 
false colour representation of PRI index computation for two sample plants, one from each 
group, is reported in Figure 2. 
 
VIs-based stress detection 
In order to define a VIs-based robust classifier to detect combined drought and salinity stress 
condition of tomato plants, an explorative analysis of the potential informative content of each 
considered vegetation index was firstly assessed. In this phase, two methods have been 
applied: (1) the Principal Component Analysis (PCA) and the Analysis of Variance (ANOVA). 
More in details, the PCA, which was performed on the entire dataset (36 plants/observations 
and 9 VIs/variables), allows to quantify the variance explained and to detect those VIs 
providing more informative content on the dataset variance. Then, the ANOVA was applied 



on the values of each vegetation index individually, considering the induced stresses as groups. 
This additional preliminary analysis was used to further characterise the dataset and to select 
most performing indices to be used in the subsequent phase. Indeed, the two best vegetation 
indices are selected, among the nine analysed, and used to test three different classifiers, (i) 
decision tree model, (ii) discriminant analysis, and (iii) support vector machine. All the data 
processing was performed and implemented in Matlab® R2022a environment. The k-fold 
cross-validation technique, with k=6, was used in the implemented Matlab® algorithms to 
verify the absence of over-fitting during the models training (Arlot and Celisse, 2010). 
 
Results 
Ecophysiological measurements 
Results of the computed relative transpiration TR, calculated by Equation 2, and of the 
measured electrical conductivity EC, showed a significance difference between the unstressed 
pots compared to the stressed ones (Table 3), confirming the effectiveness of the used stress 
protocol. 
The regression between the measurements of the assimilation rate A and the transpiration rate 
E are well approximated by the following exponential equation 
 

𝐴 = −15.08𝑒𝑥𝑝&+.-+./ + 11.17	, (3) 
 
with a coefficient of determination of 0.81. The graphical represented of Eq. (3) is reported in 
Figure 3, together with the experimental measurements. Unstressed plants present (blue points 
in Figure 3), on average, higher values of A and E than stressed plants (red squares in Figure 
3). The following exponential equation, plotted in Figure 4, 
 

𝐺0 = 1.992𝑒&1𝑒𝑥𝑝+.+213! + 7.192𝑒𝑥𝑝+.++-3! (4) 
 
approximates the regression model between the Gs (stomatal conductance) and Ci (CO2 
concentration inside the leaf) measurements. Unstressed plants (blue points in Figure 4) have, 
on average, higher values of both Gs and Ci than stressed plants which are represented with 
red squares in Figure 4. 
 
Vegetation index based stress detection 
Results of the PCA explorative analysis of the entire VIs dataset are graphically reported in 
Figure 5. The higher absolute values of the first principal component coefficients were obtained 
by CRI and CI indices (defined in Table 2), with 0.73 and 0.55 respectively. VOGREI was the 
third, with a coefficient value of 0.39, while all the other VIs contributed to the first principal 
component with coefficients lower than 0.05.  
The values of the vegetation indices computed for each pot of the experimental campaign are 
graphically represented by boxplots in Figure 6, grouped by unstressed and stressed plants. 
The potential informative content about combined drought and salinity stress, of each 
considered vegetation index, was then assessed by Analysis of Variance (ANOVA). Results of 
ANOVA confirmed that the CI and PRI indices, which scored the two lowest p-values of 
0.0079x10-6 and 0.0006x10-9 respectively, are the most performing ones, and they are thus 
adopted in the subsequent phase to detect the optimal VIs-based stress detection classifier. 
Results of the three tested classification methods to detect the tomato plants affected by stress 
condition are reported in Figures 7-9, for decision tree model, discriminant analysis model, 
and support vector machine (SVM) model, respectively. In particular, solid red and blue 
markers represent correctly classified tomato plants as stressed (true positive) and unstressed 



(true negative) respectively, while red and blue empty markers represent incorrectly classified 
tomato plants (false positive and false negative). 
The confusion matrices related to the results of Figures 7-9 are shown in Tables 4-6. It can be 
noticed that the decision tree model has lower performance in correctly classify the tomato 
plants to stress and unstressed category than the other two models (Figure 7, Table 4). The 
performance of this model in detecting unstressed tomato plants is slightly higher than 90% 
while the one to detect stressed tomato plants is nearly 90%. The linear discriminant model 
has both performances to correctly classify unstressed and stressed tomato plants higher than 
90% (Figure 8, Table 5). The last classification method tested, the SVM model, has detected 
with 100% accuracy the unstressed plants and with almost 90% the stressed ones (Figure 9, 
Table 6). 
 
Discussion and conclusions 
The experimental protocol was able to induce a mild combined drought and salinity stress (E 
of 0.5-2 mmol m-2 s-1) (Secchi et al., 2013) in stressed tomato plants, with an average relative 
transpiration ratio (TR) of around 0.3 and a perlite with electrical conductivity (EC) of around 
5 dS m-1. In addition, it can be noted that Gs values for stressed plants do not increase with 
increasing of the Ci values (Figure 4). Indeed, in mild stress conditions, regulation of 
photosynthesis is due to combined action of stomatal and metabolic limitations, consequently 
the CO2 concentration inside the leaves varies widely based on metabolic feedbacks to 
stomatal regulation. The exponential equation well combines a theoretical fully stomatal 
response (a putative vertical interpolation line) with a theoretical pure metabolic response (a 
putative horizontal interpolation line). The former response could be seen in the higher per-
forming outliers of unstressed plants, the latter in the lower performing outliers of plants under 
stress. In the intermediate region of the exponential curve all the transition states mix, as 
described. 
For what concert the vegetation index based stress detection, the most remarkable result is that 
the relation between the photochemical reflectance index (PRI) and chlorophyll index (CI) 
obtained from multispectral imagery allows the classification of stressed or unstressed tomato 
plants in a fast, cost effective and non-invasive way. Indeed, the use of classification methods 
based on vegetation indices has the great advantage of saving time with respect to the 
evaluation of ecophysiological measurements. The combined drought and salinity stress not 
only leads to stomatal closure but also decreases the photosynthesis rate and causes reduced 
growth, thus leading to the loss of key pigments such as chlorophylls (Chaves et al., 2009). 
Chlorophylls are the main actors in the absorption of light for the photochemical reaction in 
plants, and the reflectance stress induced by chlorosis is high in the range of 690-700 nm 
(Carter, 1993). On the other hand, the PRI index is related to the overall plant canopy pigments, 
and carotenoids in particular (Roberts et al., 2012). Carotenoids are involved in the absorption 
of light for photosynthesis and have the important role to protect chlorophylls during a 
combined drought and salinity stress (Chaves and Oliveira, 2004). This requires the rapid 
interconversion of the carotenoid xanthophyll to zeaxanthin (Krause and Weis, 1991), which 
competes with photochemistry of absorbed light by dissipating the energy as heat, a process 
called Non-Photochemical Quenching (NPQ) (Demmig-Adams and Adams, 1996). From a 
spectral point of view, carotenoid interconversion is recorded with a decrease in reflectance 
at 531 nm. So, stressed plants are characterised by lower PRI values than unstressed plants. 
The system and algorithms used for multispectral image acquisition and processing 
respectively were effective for the identification of tomato plants undergoing a combined 
drought and salinity stress at an early growth stage (4 weeks from transplant). The results 
presented in Figures 7-9, as well as in Tables 4-6, indicate that some vegetation indices 



combined with deep learning tools allow a good identification of stressed tomato plants. These 
innovative tools based on multispectral imaging were indeed selected and developed to 
identify stressed plants avoiding the use of time-consuming traditional techniques based on 
ecophysiological measurements. 
In conclusion, the methodology here presented involved consecutive steps to stress the tomato 
plants in a controlled environment, monitor their ecophysiological parameters with a 
traditional method and then acquire multispectral images for vegetation indices computation. 
The tomato plant imaging system was automatic and non-destructive, and allowed stressed 
plant to be classified with a very good accuracy, higher than 90%, by using a deep learning 
approach in Matlab® environment. 
To the best of our knowledge, assessing the possibility of using multispectral imaging to 
automatically extract information from tomato plants under combined stress conditions 
(drought and salinity) has not been investigated yet. In addition, the developed image 
processing steps could be profitably applied to imageries of other plant species. Moreover, the 
MAIA S2 multispectral camera, besides its original development for aerial images, fulfills the 
requirements to be also used in the field installed on fixed platforms or robotic platforms with 
a short distance from the crop. The developed methodology to detect combined draught and 
salinity stress can be easily applied in a real productive structured context, such as commercial 
greenhouses, implementing e.g. a mobile gantry to host the optical spectral sensor. The 
adoption in open field has additional difficulties to be managed, such as the absence of 
facilities and the need to couple the sensor with amore complex displacement system, such as 
UGVs. 
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Table 1. Wavelength ranges of MAIA S2 bands. 
Band name Band range 
Violet 𝐵1 = 433 − 453	[𝑛𝑚] 
Blue 𝐵2 = 457.5 − 522.5	[𝑛𝑚] 
Green 𝐵3 = 525 − 575	[𝑛𝑚] 
Red 𝐵4 = 650 − 680	[𝑛𝑚] 
Red Edge 1 𝐵5 = 697.5 − 712.5	[𝑛𝑚] 
Red Edge 2 𝐵6 = 732.5 − 747.5	[𝑛𝑚] 
Near Infrared 1 𝐵7 = 773 − 793	[𝑛𝑚] 
Near Infrared 2 𝐵8 = 784.5 − 899.5	[𝑛𝑚] 
Near Infrared 3 𝐵9 = 855 − 875	[𝑛𝑚] 

 
Table 2. Vegetation indices selected in this study. 

Type index Index name Index formula 

Simple ratio 

Anthocyanin 
Reflectance Index 𝐴𝑅𝐼 =

𝐵5
𝐵3 

Chlorophyll Index 𝐶𝐼 =
𝐵7
𝐵3 − 1 

Carotenoid 
Reflectance Index 𝐶𝑅𝐼 =

𝐵5
𝐵2 

Plant Senescence 
Reflectance Index 𝑃𝑆𝑅𝐼 =

𝐵4 − 𝐵2
𝐵6  

Vogelmann 
Red Edge Index 𝑉𝑂𝐺𝑅𝐸𝐼 =

𝐵6
𝐵5 

Normalised difference 

Green Normalised  
Differential 
Vegetation Index 

𝐺𝑁𝐷𝑉𝐼 =
𝐵7 − 𝐵3
𝐵7 + 𝐵3 

Normalised 
Differential 
Red Edge Index 

𝑁𝐷𝑉𝐼 =
𝐵7 − 𝐵5
𝐵7 + 𝐵5 

Normalised Pigment  
Chlorophyll Index 𝑁𝑃𝐶𝐼 =

𝐵4 − 𝐵1
𝐵4 + 𝐵1 

Photochemical 
Reflectance Index 𝑃𝑅𝐼 =

𝐵2 − 𝐵3
𝐵2 + 𝐵3 

 
 
 
 
Table 3. Experimental conditions between unstressed and stressed pots. Each value 
represents the average of eighteen pots with Standard Deviation. ANOVA one-way statistical 
significance is indicated by an asterisk (*) symbol.  

  TR EC (dS m-1) 
Unstressed 1±0.023 0.53±0.029  

Stressed 0.31±0.063 ∗∗∗ 5.23±0.13 ∗∗∗ 

 
 
 
 



Table 4. Confusion matrix of the fine tree classification model (see Figure 6). 
True 
class 

unstressed 88.9 % 11.1 % 
stressed 5.6 % 94.4 % 

  unstressed stressed 
  Predicted class 

 
 
Table 5. Confusion matrix of the linear discriminant classification model (see Figure 7). 

True 
class 

unstressed 94.4 % 5.6 % 
stressed 5.6 % 94.4 % 

  unstressed stressed 
  Predicted class 

 
 
Table 6. Confusion matrix of the linear support vector machines classification model (see 
Figure 8). 

True 
class 

unstressed 94.4 % 5.6 % 
stressed 0 % 100 % 

  unstressed stressed 
  Predicted class 

 
  



 

 
 
Figure 1. Scheme of the developed acquisition system for plant multispectral images and 3D 
point cloud model (not exploited in this work). 
 
 

 
(a) (b) 

 
(c) (d) 

 
Figure 2. (a) False colour visualisation of the NIR band image of a tomato plant acquired by the MAIA 
S2 camera (B7, Table 1), (b) results of the image segmentation to detect pixels representing tomato 
leaves (red), and false colour visualization of PRI index (Table 2) of unstressed (c) and stressed (d) 
sample plant. 



 
 
Figure 3. Ecophysiological measurements of unstressed (blue dots) and stressed (red squares) 
tomato plants: assimilation rate (A) as a function of the transpiration rate (E). The black solid 
line represents the data regression model, with its coefficient of determination (R2), see Eq. (3). 
 

 
 
Figure 4. Ecophysiological measurements of unstressed (blue dots) and stressed (red squares) 
tomato plants: the stomatal conductance (Gs) as a function of the concentration inside the leaf 
(Ci). The black line represents the data regression model with its coefficient of determination 
(R2), see Eq. (4). 
 
 
 

 



 
(a) (b) 

 
Figure 5. Results of PCA analysis applied on the entire VIs dataset: (a) percentage of variance 
explained by each principal component and (b) scatter plot of obtained observations scores in 
the plane of first two principal components, together with orthonormal principal component 
coefficients for each variable (VIs).  
 
 

 
 

Figure 6. Values of the vegetation indices listed in Table 2, separately calculated for unstressed 
and stressed plants. Each boxplot was made considering eighteen vegetation indices values. 



 
 
Figure 7. Results of the decision tree classification model based on the photochemical 
reflectance index (PRI) and the chlorophyll index (CI). Red and blue circles represent correctly 
classified tomato plants as stressed (true positive) and unstressed (true negative), red and blue 
triangles represent incorrectly classified tomato plants (false positive and false negative). 
 
 

 
 
Figure 8. Results of the linear discriminant classification model based on the photochemical 
reflectance index (PRI) and the chlorophyll index (CI). Red and blue circles represent correctly 
classified tomato plants as stressed (true positive) and unstressed (true negative), red and blue 
triangles represent incorrectly classified tomato plants (false positive and false negative). 
 
 



 
 
Figure 9. Results of the linear support vector machines classification model based on the 
photochemical reflectance index (PRI) and the chlorophyll index (CI). Red and blue circles 
represent correctly classified tomato plants as stressed (true positive) and unstressed (true 
negative), red and blue triangles represent incorrectly classified tomato plants (false positive 
and false negative). 


