
Abstract
A major issue in several farming areas of the Mediterranean

basin consists of drought and salinity stress. This stress is mainly
due to a steady exposition of warm daily temperature and heat-

waves, moreover with inevitable irrigation with saline water.
Therefore, detecting the stress is essential to minimise significant
yield loss and preserve agricultural sustainability. In this context,
remote and proximal sensing can play a crucial role in allowing
fast, not destructive, extensive, and reliable assessment of crop
status. In this work, the effectiveness of several multispectral
indices in detecting salinity and water stress in tomato plants,
grown under controlled green-house conditions, was investigated.
Three different classifiers (fine tree model, linear discriminant
model, and linear support vector machines model) were used to
verify whether, and the extent to which, the adopted multispectral
indices can be adopted to identify a stress condition of the tomato
plants. In the experimental campaign, the stress occurrence on
tomato plants was assessed on the base of a set of ecophysiologi-
cal measurements, such as transpiration, stomatal conductance,
and photosynthesis rate. Obtained results showed that a classifica-
tion model based on linear support vector machines, exploiting the
combination of Photochemical Reflectance Index and the
Chlorophyl Index, can detect drought and salinity stress in tomato
plants with an accuracy higher than 94%.

Introduction
The Mediterranean Basin has been recognised as one of the

most productive horticultural areas, especially for tomatoes
(Solanum lycopersicum L.). Indeed, tomato cultivation has
increased three-fold from the last 50 years, reaching in the
European Union (EU) five million hectares in 2015 with more
than 85% of tomatoes produced by the Mediterranean members
(Eurostat, 2019). Among the non-EU Mediterranean countries,
Turkey and Egypt are the most tomato producers with an average
production of 10.1 and 7.3 million tons respectively, thus resulting
in the fourth and fifth tomato producers in the world (FAOSTAT,
2019). Because of climate change, some areas of the
Mediterranean Basin are increasingly exposed to warm daily tem-
peratures and heatwaves, thus limiting vegetable production
(Cramer et al., 2018; Linares et al., 2020; Tramblay et al., 2020).
Therefore, within the next few years, drought stress is likely to
become an essential issue for Mediterranean farmers, impacting
the yield and productivity of the crop (Liu et al., 2016). Also, in
some Mediterranean coastal regions, salinity stress has been
receiving much attention due to the unavoidable use of saline
water for irrigation, which causes significant yield loss and impor-
tant modifications in the soil physicochemical properties promot-
ing its degradation (Paranychianakis et al., 2005; Aragüés et al.,
2011). Drought and salinity stress are involved in limiting plant
growth and yield, mainly due to loss of turgor, impaired enzymatic
activity, stomata closure and consequent less carbon intake in
plants, downregulation of photosynthesis, damage in the photo-
synthesis machinery caused by Reactive Oxygen Species (ROS)
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increment, sodium (Na+) toxicity, and nutrient imbalance especial-
ly Nitrogen (NO2-) (Chaves et al., 2003; Chaves et al., 2009;
Farooq et al., 2012; Ors and Suarez, 2017; Ekinci et al., 2018).

One of the most valuable techniques to assess the physiologi-
cal status of plants under stress is the measurement of photosynthe-
sis with gas exchange systems. This technique has been developed
and applied for several decades and considered the qualitative ref-
erence for photosynthetic measurements (Patono et al., 2022,
2023). In gas exchange systems, a leaf (or the whole plant canopy)
is compartmentalised inside a cuvette, and a known airflow rate
conveyed through the cuvette to measure CO2 and H2O concentra-
tion of air entering and leaving the cuvette. From the data obtained
in gas exchange systems, the most common measurements that can
be evaluated are net photosynthetic rate or assimilation rate (A),
transpiration rate (E), stomatal conductance (Gs) and CO2 concen-
tration inside the leaf substomatal cavity (Ci). The rate of net fixed
moles of CO2 and of H2O exchanged between the leaf and the
atmosphere are respectively A and E. Stomatal conductance, which
represents how easily vapor can pass through stomata, is calculated
as the ratio between E and the vapor pressure deficit (VPD). VPD
is the difference between the saturation water vapor pressure at the
temperature and pressure of the atmosphere at which plant is
exposed and the actual water vapor pressure of the atmosphere at
the moment of measurement. The CO2 concentration inside the
leaf, if Gs and the external concentration of CO2 remain constant,
reflects the CO2 flux from outside to the site of carboxylation (von
Caemmerer and Farquhar, 1981). However, there are many chal-
lenges that do not allow an extensive use of gas exchange systems
in precision agriculture management frameworks; these include
high investment costs, time needed to ensuring good quality mea-
surements, difficulties to scale photosynthetic parameters from few
leaves to the whole plant, and difficulty in automating data acqui-
sition (Siebers, 2021). In this context, remote sensing based on
optical sensors can play a crucial role in allowing fast, not destruc-
tive, extensive, and high spatial and temporal resolution measure-
ments of crop status with respect to standard photosynthetic meth-
ods, especially in greenhouses and open fields (Usha and Singh,
2013; Katsoulas et al., 2016). Optical sensors usually detect
canopy transmittance (Tantinantrakun et al., 2023), reflectance, or
emissivity (Lioy et al., 2021) signals, from which both agronomic
information and physiological traits about the crop can be extract-
ed. Multispectral cameras are commonly employed to detect
canopy reflectance. The intensity of the reflectance signal depends
on several parameters such as the morphological properties of the
leaves, branches and stems, light absorption by pigments, and plant
architecture (Winterhalter et al., 2013). Since photosynthesis is a
function of chlorophyll abundance and activity, measurement of
light absorption by this pigment provides a link between optical
remote sensing measurements and plant photosynthetic status
(Schlemmer et al., 2013).

Several vegetation indices have been adopted to describe crop
characteristics (e.g., leaf area index, biomass, yield) and impact of
stresses (e.g., water, nutrient, pests and diseases) using multispec-
tral bands as input (Sinclair and Ludlow, 1986; Comba et al., 2019,
2020; Guidoni et al., 2021; Psiroukis et al., 2022). However, there
are still information gaps regarding the relationship between the
data acquired through gas exchange systems and multi-spectral
vegetation indices. First, an integrative approach with physiologi-
cal data directly assessed on plants is required to assess by these
indices the real plant performance under stress (Usha and Singh,
2013). Second, previous works on multispectral-based detection of
drought and salinity stress have been focused on the evaluation of
one single stress only, without considering the possibility of com-

bined stress, such as drought and salinity. Finally, it is still poorly
understood how the multispectral parameters can be effective in
standardising the early detection of the stress in distinct genotypes,
considering their differential responses to the stress. The specific
objective of this study is the identification of vegetation indices
obtained from multispectral imagery that allow the classification
of drought- and salt-stressed or unstressed tomato plants in a fast,
cost effective and non-invasive way. Indeed, the use of classifica-
tion methods based on vegetation indices has the great advantage
of saving time with respect to the direct measurement of leaf gas
exchange.

Materials and Methods
Combined drought and salinity stress

The experimental campaign was conducted under greenhouse
conditions, and tomato (Solanum lycopersicum L.) varieties
Moneymaker, de Ramellet, ATS-048/06, Ολυμπία (Olympia),
ECU1067 (Cherry) and Mex-104 (Cherry) were considered.
Accessions were sown in plastic seedlings trays filled with peat
and then placed in a walk-in growth chamber set at 26 °C, 50% of
relative humidity, and 100 µmol m-2 s-1 PAR. When three-week
old, tomato plants were transplanted into square plastic pots of 13
cm height and 0.75 dm3 volume containing perlite; the pots were
then transferred to a greenhouse. During the experimental period,
the average temperature in the greenhouse was 25.5±3.8°C and the
relative humidity 77.0±23.0%. The environmental data were col-
lected with a data logger (Tinytag Plus 2 - TGP 4500, Gemini Data
loggers Ltd, Chichester, UK) placed inside the greenhouse. The
experimental design was set up as complete randomised blocks
and included 12 conditions (6 accessions × 2 treatments), each rep-
resented by 3 replicate pots. To this aim, 36 pots were prepared.
Pots with unstressed plants were marked as  (18 plants), while
those with stressed plants  (18 plants). In addition, to assess the
effect of the evapotranspiration phenomena from the perlite soil, 6
pots without plants (3 respectively for the unstressed and stressed
condition) were filled with perlite only. Before the combined
drought and salinity stress treatment, which was planned to last 3
weeks, all 42 pots were saturated with water and drained for 24
hours, in order to let them reach common initial conditions of field
capacity.

Each pot was then connected to an automatic sprinkler system
with drippers, previously installed in the greenhouse. Unstressed
plants received 2 minutes of irrigation 4 times per day, while
stressed plants received 1 minute of irrigation once per day. The
water flow per pot was 25 mL min-1, and the drippers functioning
was daily checked for both stressed and unstressed lines by collect-
ing and measuring water delivered by randomly selected drippers.

In order to assess the effectiveness of water stress imposition,
the relative transpiration TRk of each stressed plant was evaluated
once a week. The parameter TRk is defined as the ratio between the
transpiration of stressed plants and the average of the ones belong-
ing to the corresponding unstressed group (Sinclair and Ludlow,
1986). More in detail, the procedure published in Sinclair and
Ludlow (1986) to compute the relative transpiration TRk of the kth

stressed plant is 

                              
(1)
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where MTSk,j and MTSk,j-1 are the weights of the stressed pot TSk on
j-th day and the day before (j-1), respectively, while MTuj and
MTuj-1 are the weights of each unstressed pot MTu, belonging to
the same accessions category (genotype in this case). Finally, N
represents the number of replicates (pots) in the accessions catego-
ry. In this work, Eq. (1) was modified to take into account two phe-
nomena affecting the relative transpiration computation in the
experimental campaign: i) the perlite properties of high porosity
and low water retention, and ii) the effect of the evapotranspiration
phenomena of the soil. For the first aspect, the amount of water
applied to pots W and the drained water from pots D were weighed
and considered. For the second aspect, weights MP of pots with
only perlite were also taken into account. The resulting TRk equa-
tion was thus

(2)

where WSj-1 and Wuj-1 represent the grams of water applied the day
before (j-1) to stressed and unstressed pots, respectively, and DS
and Du represent the grams of water drained from stressed and
unstressed pots. MP are the weight of pots filled with perlite only,
which were watered as those in the unstressed (MPu) and stressed
(MPS) plants classes and the drainage also from these pots (DMPu
and DMPS) ere collected and considered in the final calculation, as
described before.WSj-1 and Wuj-1 were measured by randomly col-
lecting the water from the drippers in the appropriate day.

In order to provide sufficient nutrients to the plants during all
the experimental period, a fertirrigation with a standard De Kreij et
al. (1997) solution was performed three times per week. To induce
salinity stress, the water-stressed plants were fertigated with a stan-
dard De Kreij et al. (1997) solution, three times per week, in which
81 mM of commercial sea salt was dissolved, thus resulting in a
final electrical conductivity (EC) of about 8 dS m-1. Commercial
sea salt was preferred to pure NaCl salt in order to simulate seawa-
ter infiltration in the irrigation system as suggested by De Pascale
et al. (2003). Finally, in order to monitor the perlite salinity, the
drainages of plant pots were randomly collected, and the EC was
measured with an electrical conductivity meter.

Ecophysiological measurements
After 3 weeks of drought and salinity stress treatments, when

the average transpiration ratio (TR) and electrical conductivity
(EC) of all stressed accessions was 0.31±0.06 and 5.23±0.13 dS m-

1 respectively, CO2 gas exchange measurements on stressed and
un-stressed plants were performed to calculate the assimilation rate
(A), transpiration rate (E), stomatal conductance (Gs) and CO2
concentration inside the leaf (Ci). To this aim, a GFS-3000 IRGA
(Walz, Germany) instrument was used, which measures CO2 and
H2O gas exchange between plant and ambient air in a controlled
environment. Measurements were made on a sunny day between
10 am and 1 pm, and were done on three leaves for each tomato
plant. For each measurement, a well expanded leaf of was clamped
in a cuvette of 8 cm2. An air flow of 750 µmol s-1 was maintained
inside the cuvette. Temperature and relative humidity of the flux-
ing air were set to follow greenhouse condition. During the entire
measurement campaign (10 am - 1 pm), temperature and relative
humidity ranged between 20 and 24°C, and 60 and 80 % respec-
tively. The cuvette was irradiated by a GFS-3000 LED lamp at a
constant light intensity of 300 µmol photons m-2 s-1. A waiting time
of 90 s was adopted to allow instrument purge time and leaf accli-

matisation after the leaf was clamped, thus reaching stable values
of ΔCO2 and ΔH2O. After the purge time, 30 consecutive record-
ings at 1 s interval were performed. The average value of the 30
time points was used in the gas exchange equations described in
von Caemmerer and Farquhar (1981) to calculate the assimilation
rate A, transpiration rate E, stomatal conductance Gs and concen-
tration inside the leaf Ci. Stressed and unstressed plants were mea-
sured alternately, and, at the end of the measurements, plants were
introduced in the multispectral images acquisition system for mul-
tispectral measurements. To verify the effectiveness of the induced
stress conditions, the correlation between the measured ecophysi-
ological measurements was investigated based on a regression
analysis in Matlab® R2022a environment, where the best fitting
curves were obtained. Specifically, the A and Gs measurements
were plotted against the E and Ci ones respectively.

Multispectral images acquisition system
In order to evaluate vegetation indices of stressed and

unstressed plants, multispectral imagery of each treated pot has
been acquired. To this aim, a MAIA S2 multispectral camera (SAL
Engineering, Russi, RA, Italy) was adopted, which features an
array of nine sensors with 1.2 MPx resolution. Each sensor has a
dimension of 4.8 x 3.6 mm with a pixel size of 3.75 μm, and the
spectral coverage is from 390 to 950 nm (average spectral resolu-
tion of 37 nm). Please refers to Table 1 for MAIA S2 spectral
bands. The MAIA camera is equipped with a global shutter tech-
nology which allows pixels charge collection of the nine sensors to
be started simultaneously, thus the nine images can be acquired in
“one shot” with a perfect synchronisation among bands with a
frame rate set to 1 Hz. This technical solution also avoids the so-
called negative Jello effect that occurs when acquiring an image at
a high-frequency rate. Moreover, the fast exposure time of the nine
global shutters guarantees the absence of the blurring. The images
were saved in a proprietary format in 12 bits.

The MAIA camera was installed face down on the roof of a
closed box having a wooden frame, at a relative height of 2.50
metres from the ground. The frame had a square shape with an
edge and height of 3 and 4 metres respectively. The artificial illu-
mination system consisted of six halogen lamps of 100 W each and
a light diffuser. The six lamps were mounted on the roof of the box
and a shield was installed around the MAIA camera in order to pre-
vent possible direct light from the lamps to the nine sensors. The
developed data acquisition system was also equipped with a RGB
camera to automatically acquire an image of the unique identifica-
tive QR code applied on each pot. After the acquisition of a multi-
spectral image of the plant, the system also performs a scanning
procedure with a 3D sensor and a turning platform, with the aim to
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Table 1. Wavelength ranges of MAIA S2 bands. 

Band name                            Band range

Violet                                        B1 = 433 – 453 (nm)
Blue                                       B2 = 457.5 – 522.5 (nm)
Green                                       B3 = 525 – 575 (nm)
Red                                           B4 = 650 – 680 (nm)
Red edge 1                            B5 = 697.5 – 712.5 (nm)
Red edge 2                            B6 = 732.5 – 747.5 (nm)
Near infrared 1                        B7 = 773 – 793 (nm)
Near infrared 2                     B8 = 784.5 – 899.5 (nm)
Near infrared 3                        B9 = 855 – 875 (nm)
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reconstruct a 3D model of the plant (not used in this work). The
schematic representation of the acquisition system is reported in
Figure 1. The inner side surfaces and the floor of the box were
upholstered with matte white and matte black material respectively
to avoid the shadow effect. Indeed, each pot was in the centre of
the floor before acquiring the multispectral image. An Incident
Light Sensor (ILS) was integrated with the MAIA camera and
mounted inside the box to measure the light level for each shot in
each band. The ILS allowed both data for correction due to light
level and true reflectance ratios calculation to be collected. The
ILS data were automatically stored into the log file related to the
image acquisition set.

The raw multispectral images were then processed with the
MAIA images software MultiCam Stitcher Pro for geometric cor-
rection, coregistration and radiometric correction in order to obtain
images in .tiff format. Four black and white chessboards, printed
on A5 size paper, were attached to the floor of the box to help in
the coregistration process.

Each plant was placed in the middle of the box floor and both
the MAIA and the illumination system were controlled by Matlab®

script using an Arduino shield as I/O device, to menage automatic
triggers. Considering all the steps (plant positioning in the box,
acquiring images and plant removing), each multispectral image
took about 2 minutes to be automatically acquired and saved.

Vegetation indices
Multispectral imaging is a powerful tool for agronomic analy-

sis as it allows plant status to be monitored in a non-destructive
way and with a high temporal resolution. After images acquisition
and correction (see paragraph Multispectral images acquisition
system), the images segmentation was performed to separate leaves
from the background by using a semantic segmentation method in
Matlab® R2022a environment based on a convolutional neural net-
work (U-net) and deep learning (Comba et al., 2020; Biglia et al.,
2022). Since this method looks at the entire set of multispectral
channels, it has a higher accuracy than traditional methods based
on a fixed threshold. After segmentation, a mask for each plant was
automatically created to identify only the area covered by the
leaves (young and developed) as shown in Figure 2. Then, the
mask was applied to all the 9 bands of the multispectral imagery to
extract the reflectance values of the regions of interest.

The vegetation indices calculated and evaluated in this work

for the identification of tomato plants under combined drought and
salinity stress are listed in Table 2. The nine indices were selected
according to literature review on applications of crops reflectance
monitoring for drought and/or salinity stress detection (Katsoulas
et al., 2016; Elvanidi et al., 2018). For each of the 36 nadiral mul-
tispectral images acquired, the selected nine vegetation indices
were computed for all the pixels considered in the ROI (leaves)
and then the average value was computed, which was considered
as representative of each single tomato plant canopy. The false
colour representation of PRI index computation for two sample
plants, one from each group, is reported in Figure 2.
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Table 2. Vegetation indices selected in this study.

Figure 1. Scheme of the developed acquisition system for plant
multispectral images and 3D point cloud model (not exploited in
this work).

Figure 2. a) False colour visualisation of the NIR band image of a
tomato plant acquired by the MAIA S2 camera (B7, Table 1). 
b) Results of the image segmentation to detect pixels representing
tomato leaves (red), and false colour visualization of PRI index
(Table 2) of unstressed (c) and stressed (d) sample plant.
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VIs-based stress detection
In order to define a VIs-based robust classifier to detect com-

bined drought and salinity stress condition of tomato plants, an
explorative analysis of the potential informative content of each
considered vegetation index was firstly assessed. In this phase, two
methods have been applied: (1) the Principal Component Analysis
(PCA) and the Analysis of Variance (ANOVA). More in details, the
PCA, which was performed on the entire dataset (36 plants/obser-
vations and 9 VIs/variables), allows to quantify the variance
explained and to detect those VIs providing more informative con-
tent on the dataset variance. Then, the ANOVA was applied on the
values of each vegetation index individually, considering the
induced stresses as groups. This additional preliminary analysis
was used to further characterise the dataset and to select most per-
forming indices to be used in the subsequent phase. Indeed, the two
best vegetation indices are selected, among the nine analysed, and
used to test three different classifiers: i) decision tree model, ii)
discriminant analysis, and iii) support vector machine. All the data
processing was performed and implemented in Matlab® R2022a
environment. The k-fold cross-validation technique, with k=6, was
used in the implemented Matlab® algorithms to verify the absence
of over-fitting during the models training (Arlot and Celisse,
2010).

Results

Ecophysiological measurements
Results of the computed relative transpiration TR, calculated

by Equation 2, and of the measured electrical conductivity EC,
showed a significance difference between the unstressed pots com-
pared to the stressed ones (Table 3), confirming the effectiveness
of the used stress protocol. The regression between the measure-
ments of the assimilation rate A and the transpiration rate E are
well approximated by the following exponential equation

                                                     
(3)

with a coefficient of determination of 0.81. The graphical repre-
sented of Eq. (3) is reported in Figure 3, together with the experi-
mental measurements. Unstressed plants present (blue points in
Figure 3), on average, higher values of A and E than stressed plants
(red squares in Figure 3). The following exponential equation,
plotted in Figure 4,

                                            
(4)

approximates the regression model between the Gs (stomatal con-
ductance) and Ci (CO2 concentration inside the leaf) measure-
ments. Unstressed plants (blue points in Figure 4) have, on aver-
age, higher values of both Gs and Ci than stressed plants which are
represented with red squares in Figure 4.

Vegetation index based stress detection
Results of the PCA explorative analysis of the entire VIs

dataset are graphically reported in Figure 5. The higher absolute
values of the first principal component coefficients were obtained
by CRI and CI indices (defined in Table 2), with 0.73 and 0.55
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Figure 3. Ecophysiological measurements of unstressed (blue-
dots) and stressed (red squares) tomato plants: assimilation rate
(A) as a function of the transpiration rate (E). The black solid line
represents the data regression model, with its coefficient of deter-
mination (R2), see Eq. (3).

Table 3. Experimental conditions between unstressed and stressed
pots. Each value represents the average of eighteen pots with stan-
dard deviation. 

                                            TR                      EC (dS m-1)

Unstressed                               1±0.023                        0.53±0.029 
Stressed                              0.31±0.063***                 5.23±0.13***

***ANOVA one-way statistical significance.

Figure 4. Ecophysiological measurements of unstressed (blue
dots) and stressed (red squares) tomato plants: the stomatal con-
ductance (Gs) as a function of the concentration inside the leaf
(Ci). The black line represents the data regression model with its
coefficient of determination (R2), see Eq. (4).
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respectively. VOGREI was the third, with a coefficient value of
0.39, while all the other VIs contributed to the first principal com-
ponent with coefficients lower than 0.05. The values of the vege-
tation indices computed for each pot of the experimental campaign
are graphically represented by boxplots in Figure 6, grouped by
unstressed and stressed plants. The potential informative content
about combined drought and salinity stress, of each considered
vegetation index, was then assessed by Analysis of Variance
(ANOVA). Results of ANOVA confirmed that the CI and PRI
indices, which scored the two lowest p-values of 0.0079x10-6 and
0.0006x10-9 respectively, are the most performing ones, and they
are thus adopted in the subsequent phase to detect the optimal VIs-
based stress detection classifier. Results of the three tested classi-
fication methods to detect the tomato plants affected by stress con-
dition are reported in Figures 7-9, for decision tree model, discrim-
inant analysis model, and support vector machine (SVM) model,
respectively. In particular, solid red and blue markers represent
correctly classified tomato plants as stressed (true positive) and
unstressed (true negative) respectively, while red and blue empty
markers represent incorrectly classified tomato plants (false posi-
tive and false negative). The confusion matrices related to the
results of Figures 7-9 are shown in Tables 4-6. It can be noticed
that the decision tree model has lower performance in correctly
classify the tomato plants to stress and unstressed category than the
other two models (Figure 7, Table 4). The performance of this
model in detecting unstressed tomato plants is slightly higher than
90% while the one to detect stressed tomato plants is nearly 90%.
The linear discriminant model has both performances to correctly
classify unstressed and stressed tomato plants higher than 90%
(Figure 8, Table 5). The last classification method tested, the SVM
model, has detected with 100% accuracy the unstressed plants and
with almost 90% the stressed ones (Figure 9, Table 6).

Discussion and conclusions
The experimental protocol was able to induce a mild combined

drought and salinity stress (E of 0.5-2 mmol m-2 s-1) (Secchi et al.,

2013) in stressed tomato plants, with an average relative transpira-
tion ratio (TR) of around 0.3 and a perlite with electrical conduc-
tivity (EC) of around 5 dS m-1. In addition, it can be noted that Gs
values for stressed plants do not increase with increasing of the Ci
values (Figure 4). Indeed, in mild stress conditions, regulation of
photosynthesis is due to combined action of stomatal and metabol-
ic limitations, consequently the CO2 concentration inside the
leaves varies widely based on metabolic feedbacks to stomatal reg-
ulation. The exponential equation well combines a theoretical fully
stomatal response (a putative vertical interpolation line) with a the-
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Figure 5. Results of PCA analysis applied on the entire VIs dataset: percentage of variance (a) explained by each principal component
and (b) scatter plot of obtained observations scores in the plane of first two principal components, together with orthonormal principal
component coefficients for each variable (VIs). 
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Table 5. Confusion matrix of the linear discriminant classification
model (see Figure 7).

True class                 Unstressed                94.4%                         5.6%
                                     Stressed                    5.6%                         94.4%
                                                                 Unstressed                   Stressed
                                           Predicted class

Table 6. Confusion matrix of the linear support vector machines
classification model (see Figure 8).

True class                 Unstressed                94.4%                         5.6%
                                     Stressed                     0%                           100%
                                                                 Unstressed                   Stressed
                                           Predicted class

Table 4. Confusion matrix of the fine tree classification model (see
Figure 6).

True class                 Unstressed                88.9%                        11.1%
                                     Stressed                    5.6%                         94.4%
                                                                 Unstressed                   Stressed
                                           Predicted class
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oretical pure metabolic response (a putative horizontal interpola-
tion line). The former response could be seen in the higher per-
forming outliers of unstressed plants, the latter in the lower per-
forming outliers of plants under stress. In the intermediate region
of the exponential curve all the transition states mix, as described.

For what concert the vegetation index based stress detection,
the most remarkable result is that the relation between the photo-
chemical reflectance index (PRI) and chlorophyll index (CI)
obtained from multispectral imagery allows the classification of
stressed or unstressed tomato plants in a fast, cost effective and
non-invasive way. Indeed, the use of classification methods based
on vegetation indices has the great advantage of saving time with
respect to the evaluation of ecophysiological measurements. The
combined drought and salinity stress not only leads to stomatal
closure but also decreases the photosynthesis rate and causes
reduced growth, thus leading to the loss of key pigments such as
chlorophylls (Chaves et al., 2009). Chlorophylls are the main
actors in the absorption of light for the photochemical reaction in
plants, and the reflectance stress induced by chlorosis is high in the
range of 690-700 nm (Carter, 1993). On the other hand, the PRI
index is related to the overall plant canopy pigments, and
carotenoids in particular (Roberts et al., 2012). Carotenoids are

involved in the absorption of light for photosynthesis and have the
important role to protect chlorophylls during a combined drought
and salinity stress (Chaves and Oliveira, 2004). This requires the
rapid interconversion of the carotenoid xanthophyll to zeaxanthin
(Krause and Weis, 1991), which competes with photochemistry of
absorbed light by dissipating the energy as heat, a process called
Non-Photochemical Quenching (NPQ) (Demmig-Adams and
Adams, 1996). From a spectral point of view, carotenoid intercon-
version is recorded with a decrease in reflectance at 531 nm. So,
stressed plants are characterised by lower PRI values than
unstressed plants.

The system and algorithms used for multispectral image acqui-
sition and processing respectively were effective for the identifica-
tion of tomato plants undergoing a combined drought and salinity
stress at an early growth stage (4 weeks from transplant). The
results presented in Figures 7-9, as well as in Tables 4-6, indicate
that some vegetation indices combined with deep learning tools
allow a good identification of stressed tomato plants. These inno-
vative tools based on multispectral imaging were indeed selected
and developed to identify stressed plants avoiding the use of time-
consuming traditional techniques based on ecophysiological mea-
surements.
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Figure 6. Values of the vegetation indices listed in Table 2, separately calculated for unstressed and stressed plants. Each boxplot was
made considering eighteen vegetation indices values.
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In conclusion, the methodology here presented involved con-
secutive steps to stress the tomato plants in a controlled environ-
ment, monitor their ecophysiological parameters with a traditional
method and then acquire multispectral images for vegetation
indices computation. The tomato plant imaging system was auto-
matic and non-destructive, and allowed stressed plant to be classi-
fied with a very good accuracy, higher than 90%, by using a deep
learning approach in Matlab® environment.

To the best of our knowledge, assessing the possibility of using
multispectral imaging to automatically extract information from
tomato plants under combined stress conditions (drought and salin-
ity) has not been investigated yet. In addition, the developed image
processing steps could be profitably applied to imageries of other
plant species. Moreover, the MAIA S2 multispectral camera,
besides its original development for aerial images, fulfills the
requirements to be also used in the field installed on fixed plat-
forms or robotic platforms with a short distance from the crop. The
developed methodology to detect combined draught and salinity
stress can be easily applied in a real productive structured context,
such as commercial greenhouses, implementing e.g. a mobile
gantry to host the optical spectral sensor. The adoption in open
field has additional difficulties to be managed, such as the absence
of facilities and the need to couple the sensor with amore complex
displacement system, such as UGVs.
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