
Abstract
YOLO represents the one-stage object detection also called

regression-based object detection. Object in the given input is
directly classified and located instead of using the candidate
region. The accuracy from two-stage detection is higher than one-
stage detection where one-stage object detection speed is higher
than two-stage object detection. YOLO has become popular
because of its detection accuracy, good generalization, open-
source, and speed. YOLO boasts exceptional speed due to its
approach of using regression problems for frame detection, elimi-
nating the need for a complex pipeline. In agriculture, using
remote sensing and drone technologies YOLO classifies and
detects crops, diseases, and pests, and is also used for land use
mapping, environmental monitoring, urban planning, and wildlife.
Recent research highlights YOLO’s impressive performance in
various agricultural applications. For instance, YOLOv4 demon-
strated high accuracy in counting and locating small objects in
UAV-captured images of bean plants, achieving an AP of 84.8%
and a recall of 89%. Similarly, YOLOv5 showed significant pre-
cision in identifying rice leaf diseases, with a precision rate of

90%. In this review, we discuss the basic principles behind YOLO,
different versions of YOLO, limitations, and YOLO application in
agriculture and farming.

Introduction
An increasing population results in an increasing demand for

food, which results in the need for increased production of agricul-
tural products. Even though there is an increase in production we
cannot meet the need because of several factors like pest and dis-
ease attacks, improper harvesting, climate factors, biodiversity,
etc. Using advanced technologies like drones, Artificial
Intelligence (AI), and robots we can manage those factors. Thus,
by introducing AI techniques we can improve the agriculture sec-
tor production and reduce crop loss by reducing pest and disease
attacks, improving nutrient management, timely harvest, etc.
Using deep learning, big data, and Internet of Things (IoT) we can
monitor crops, predict yield, manage irrigation, manage weeds,
detect plant stress, etc. In computer vision, the most challenging
and fundamental task is object detection. Object detection
involves accurately finding the object in the input image and clas-
sifying it according to the labels. In object detection, object clas-
sification, instance segmentation, and semantic segmentation are
related (Xiao et al., 2020; Zhang and Cloutier, 2021). Due to the
development of deep learning methods, object detection has
improved from machine learning to deep learning methods which
are based on analytics. In remote sensing object detection is more
challenging due to the smaller number of datasets available, and
low-resolution images (Teng et al., 2019; Yin et al., 2018, 2019).
Object detection is classified into two types based on their work-
ing stage: Two-stage and single-stage object detection. Two-stage
object detection is represented by R-CNN (Region-based
Convolutional Neural Network) (Girshick, 2015). It involves
object detection in two stages. First, the candidate region is gener-
ated in the images. Then, regression processing and object classi-
fication were performed on the candidate region (Papageorgiou et
al., 1998; Zhou et al., 2018). In our review, YOLO represents the
one-stage object detection also called regression-based object
detection. Here the object in the given input is directly classified
and located instead of using the candidate region. The accuracy
from two-stage detection is higher than one-stage detection where
one-stage object detection speed is higher than two-stage object
detection (Dollár et al., 2014; Song et al., 2011). In real-time
object detection, the YOLO (You Only Look Once) algorithm is
remarkable for its accuracy and speed when compared to other
algorithms such as DPM (Deformable Parts Model), OverFeat,
SSD (Single Shot MultiBox Detector), RCNN (Regions with
Convolutional Neural Network features), SPPNet (Spatial
Pyramid Pooling Network), fast RCNN, Mask RCNN, etc., pro-
viding reliable results in a brief period. The main idea of
GoogleNet (Zhong et al., 2015) has been implemented into the
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YOLO algorithm of their networks. We can improve the Deep con-
volution network by implementing large-scale image datasets such
as ImageNet and COCO. In agriculture YOLO classifies and
detects crops (Espinoza-Hernández et al., 2023; Tian et al., 2019;
Wu et al., 2020),weeds (Ajayi et al., 2023), diseases and pests
(Lippi et al., 2021), land use mapping (Cheng et al., 2021), envi-
ronmental monitoring (Zakria et al., 2022), urban planning (Qing
et al., 2021), and wildlife (Roy et al., 2023). 

YOLO (you only look once)
YOLO is a real-time object identification technique that was

introduced in 2015 by Redmon and colleagues in their research
paper “You only look once: unified, real-time object detection”
(Redmon et al., 2016) (Figure 1). YOLO approached the object
detection problem as a regression problem spatially. The YOLO
method is a direct object detection technique that employs a soli-
tary neural network to forecast several bounding boxes and the cor-
responding probability of each box’s class. YOLO directly trains
and enhances detection performance on full-size photos, so implic-
itly adding contextual knowledge about classes and their visual
properties. Notably, Fast R-CNN, a leading detection method,
tends to misinterpret background patches as objects due to its lim-
ited contextual awareness.

History of YOLO

YOLOv1 - you only look once version 1
YOLO spatially detects objects present on the images based on

regression by creating associated class probabilities and separate
bounding boxes. YOLO’s speed is fast because it only requires the
image to be input into the network to obtain the final detection
result. This makes it possible for YOLO to perform real-time
object detection on videos as well (Jiang et al., 2022). YOLO vati-
cinate class probabilities and bounding boxes by a single neural
network in a single evaluation. By this, the optimization of the
algorithm on object detection can increased directly (Redmon et
al., 2016). By this real-time object detection has been achieved and
we can detect objects even in videos having more fps. Fast RCNN
an object detection algorithm, makes errors by identifying back-
ground patches as objects in an image but YOLO makes less than
half an error when compared to the RCNN algorithm.

Because of YOLO’s generalizability, it is more stable when
applied to a new domain of interest or unexpected inputs, when
YOLO was introduced with artworks trained with natural images, it
outperformed other algorithms such as RCNN and DPM but the
accuracy of YOLOv1 less. During test time YOLO is extremely fast

because it requires only a single network evaluation. Non-maxi-
mum suppression (NMS) has been used here to reduce the multiple
detection error. Source code: https://github.com/pjreddie/darknet

YOLO9000
YOLO9000 can detect over nine thousand object categories. A

2% improvement in mAP is achieved by adding batch normaliza-
tion to all Convolutional layers in YOLO, by this we can remove
dropouts from the model without overfitting. YOLO9000 has been
adjusted to work better in higher resolution inputs, by this increase
of 4% mAP is achieved. For predicting bounding boxes instead of
using fully connected layers, YOLOv2 used anchor boxes. The
network operation has been reduced to 416 images instead of 448
x 448 to achieve an odd number of locations in the feature map so
that we have a single centre cell. In YOLOv2 they used multiscale
training. For every 10 batches of iterations, different resolutions
have been chosen by the algorithm itself. By this, the algorithm can
detect objects at different resolutions. It is seen that, for lower res-
olution, the algorithm works fairly accurately by producing 69
mAP, and for higher resolution still operates above real-time speed
producing 78.6 mAP (Redmon and Farhadi, 2017). Using PAS-
CAL VOC 2012 dataset YOLOv2 runs faster than other algorithm
methods achieving 73.4 mAP (Table 1). YOLOv2, we have been
cooperatively using the detection dataset (detects bounding boxes,
and objectness and classifies common objects) and classification
dataset (expands the number of categories the algorithm can
detect). Here we use the multi-label model to combine data that are
not mutually exclusive. If an image is labelled for detection, our
network can backpropagate based on the complete YOLOv2 loss
function. When YOLOv2 encounters an image that requires classi-
fication, it only backpropagates the loss from the parts of the archi-
tecture that are specific to classification. Source code:
https://pjreddie.com/darknet/yolov2/

YOLOv3
Redmon and Farhadi published YOLOv3 in ArXiv in 2018.

Despite bigger architecture, they maintained the real-time perfor-
mance of YOLOv3.YOLOv3 architecture is made up of 53 convo-
lutional networks. It predicts the object using the multiscale perdi-
tion method where it uses bounding boxes of different grid sizes
which improves the prediction of smaller objects. Using regression
YOLOv3 predicts the objectness score for each bounding box.
Anchor boxes having the highest overlap with ground truth objects
have given 1 as the objectness score whereas other boxes have
given 0 as the objectness score. In YOLOv3, the author added
Spatial Pyramid Pooling as the backbone of the architecture which
improves AP50 by 2.7%. 36.2% average precision AP is achieved
by YOLOv3-spp in the COCO MS dataset, and 60.6% AP50 at 20
FPS is achieved by YOLOv3 2 times faster (Redmon and Farhadi,
2018). Source code: https://pjreddie.com/darknet/yolo/
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Figure 1. Timeline of different versions of YOLO algorithms.
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Table 2. Some studies related to object detection using YOLO in agriculture.

Author                        YOLO model     Number of images   Accuracy      Resolution (px)   Inference
                                            used              used for training                            (for training)

Buzzy et al., 2020                           Tiny-YOLOv3                             >1000                Inference time 0.01 s             410 x 410                Counting of plant leaves using Tiny
                                                                                                                                               F1 score 0.94                                                    YOLOv3 model
                                                                                                                                                   FPR 24%                               
Hamidisepehr et al., 2020                   YOLOv2                                    478                    AP 97% to 55.99%               570 x 430                Compared different object detection 
                                                                                                                                                                                                                         algorithms for corn damage assessment
Bazame et al., 2021                         Tiny-YOLOv3                                                                mAP 84%,                      800 x 800                Mapping, classification, and detection of 
                                                                                                                                               F1 score 82%                                                   coffee fruits from videos using computer
                                                                                                                                              Precision  83%,                                                  visions (YOLOv3 Tiny) in Patos de Minas, Brazil regions
                                                                                                                                                Recall  82%                             
Ohnemüller and Briassouli, 2021  Scaled YOLOv4                             3782            10% higher mAP score than       480 x 480               Improvement of YOLOv4 MS COCO dataset
                                                                                                                                           the baseline model                                               accuracy and efficiency for detection of plants using 
Nugroho et al., 2022                            YOLOv4                                    400               Average accuracy 94.6%         1024 x 720               Detection of tomato ripeness using different
                                                                                                                                                                                         720 x 480                deep learning models. The prediction results improved as
                                                                                                                                                                                                                         the total loss was reduced
Wiggers et al., 2022                 YOLOv3 and YOLOv4                         68                   AP 84.8% (YOLOv4)             416 x 416                Bean plants were captured using UAV and counted 
                                                                                                                                       Recall 89% (YOLOv4)                                            using YOLOv3 and YOLOv4 models. From this
                                                                                                                                                                                                                         YOLOv4 performed because of Spatial Pyramid Pooling (SPP)
Zhang and Li, 2022                      YOLO-VOLO LS                             300                       Recall 96.059%                 384 x 384                Used YOLO for object detection and VOLO for variety
                                                                                                                                           Precision  96.014%                                               identification of early lettuce seedlings
                                                                                                                                            F1 score 96.039%
Ajayi et al., 2023                                 YOLOv5                                    254                         Recall 69.2%                   416 x 416                Automatic detection of crops classified as banana, 
                                                                                                                                             Precision 82.3%                                                 sugarcane, pepper, spinach, and weed using 
                                                                                                                                              F1 score 75.2%                                                  the YOLOv5 model in data collected through UAV.
                                                                                                                                                                                                                         Too much of an epoch affects the model’s strength
Yeh et al., 2024                                    YOLOv4                                     94                         Accuracy 0.97          224 x 224 896 x 896       Using Mish function the accuracy of the YOLOv4 model 
                                                                                                                                               F1 score 0.91                                                    is improved in counting and locating small objects
Haque et al., 2022                                YOLOv5                                   1500                       Precision 90%                   416 x 416                Rice leaf diseases were detected and classified using the
                                                                                                                                                 Recall 67%                                                     YOLOv5 model and trained in Google Colab
                                                                                                                                                  mAP 76%
                                                                                                                                               F1 score 81%                           
Sulemane et al., 2022                 Tiny YOLO versions               1696 (RGB only)               mAP <70%                     406 x 406                To reduce water wastage in orchards, the gaps between the
                                                                                                                                                                                                                         plantations were automatically identified using algorithms and
                                                                                                                                                                                                                         found that Tiny YOLO performed well. 
                                                                                                                                                                                                                         Different spectralimages such as NDVI, and NDWI 
                                                                                                                                                                                                                         were used for the identification of gaps
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Table 1. YOLOv2 performance using PASCAL VOC 2007 dataset and PASCAL VOC 2012 dataset.

Detection frame                                                                           Resolution                                       FPS                             mAP (%)

VOC 2007 dataset

YOLOv2 (Redmon and Farhadi, 2017)                                      288 x 288                                        91                                   69
                                                                                                    352 x 352                                        81                                  73.7
                                                                                                    416 x 416                                        67                                  76.8
                                                                                                    480 x 480                                        59                                  77.8
                                                                                                    544 x 544                                        40                                  78.6

VOC 2012 dataset

YOLOv2                                                                                     544 x 544                                                                             73.4
SSD (Liu et al., 2016)                                                                512 x 512                                                                             74.9
SSD                                                                                             300 x 300                                                                             72.4
YOLOv1                                                                                                                                                                                  57.9
Fast R-CNN (Girshick, 2015)                                                                                                                                                  68.4
Faster R-CNN (Zhang et al., 2016)                                                                                                                                        70.4. 
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YOLOv4
In April 2020, YOLOv4 was introduced by Bochkovskiy and

colleagues in ArXiv. YOLOv4 aimed to discover the ideal equilib-
rium by exploring numerous modifications classified as “bag-of-
freebies” and “bag-of-specials.” “Bag-of-freebies” encompasses
techniques altering the training strategy, and escalating training
expenses, yet without a rise in inference time, with data augmenta-
tion being the predominant example. Conversely, “bag-of-spe-
cials” includes methods that slightly amplify inference costs but
markedly enhance accuracy. In YOLOv4 Self-Adversarial
Training (SAT) is used where it hides the ground truth object and
detects the correct object based on original labels. AP of 43.5% is
achieved in MS COCO dataset test-dev 2017 and 65.7% AP50 at
more than 50 FPS is achieved using NVIDIA V100 (Bochkovskiy
et al., 2020). Source code: https://github.com/AlexeyAB/darknet

YOLOv5
A few months after the release of YOLOv4, YOLOv5 is

released by Glen Jocher. YOLOv5 was developed in PyTroch.
They used the Auto Anchor method which adjusts and checks
anchor boxes for unfitness for training settings and dataset.
Installation of YOLOv5 in IoT devices is easier because it is writ-
ten in Python programming language. Even though no articles
were published by the author for YOLOv5 it is said that YOLOv5
outperforms the other previous versions. Different model versions
of YOLOv5 have been released such as YOLOv5n (nano),
YOLOv5s (small), YOLOv5m (medium), YOLOv5l (large), and
YOLOv5x (extra-large) where their convolutional size is changed
based on different hardware requirements and applications.
YOLOv5x is developed for high-resource devices with high per-
formance whereas YOLOv5s and YOLOv5n are developed for
low-resource devices. AP of 50.7% is achieved by YOLOv5x hav-
ing an image size of pixels in MS COCO dataset test-dev 2017.
Source code: https://github.com/ultralytics/yolov5

YOLOv6
Meituan Vision AI Department published YOLOv6 in ArXiv in

2022. Using post-training quantization (PTQ) and quantization-
aware training (QAT), YOLOv6 inference speed was boosted with-
out much reduction in performance. YOLOv6 was mainly devel-
oped and focused on industry applications. YOLOv6 was suffused
with a self-distillation strategy. In network designing for the con-
struction of the backbone RepBlock (Ding et al., 2021) is used for
small models, and CSP (Wang et al., 2020) block is used for large
models. For neck (Liu et al., 2018) constructs, PAN topology (used
in YOLOv5 and YOLOv6) with RepBlocks or CSPStackRep
Blocks is adopted to have Rep-PAN an enhanced version of PAN
topology. Efficient Decoupled Head is used for head construction.
For labelling task alignment learning (TAL) (Feng et al., 2021) is
considered as more efficient. In YOLOv6, we employ a hybrid-
channel strategy to create a more streamlined decoupled head. To
be precise, we decrease the count of intermediate 3x3 convolution-
al layers to just one. The head’s width is simultaneously adjusted
by the width multiplier for both the backbone and the neck. These
adjustments effectively diminish computational expenses, result-
ing in a decreased inference latency. YOLOv6 adopts an anchor-
free detector (anchor point-based) (Ge et al., 2021; Tian et al.,
2019) where the box regression branch accurately anticipates the
distance from the anchor point to all four sides of the bounding
boxes (Li et al., 2022). Source code: https://github.com/meituan/
YOLOv6

YOLOv7
Wang and colleagues published YOLOv7 in ArXiv in July

2022. YOLOv7 outperformed all existing object detectors in both
accuracy as well as speed from 5 FPS to 160 FPS range. Like
YOLOv4, YOLOv7 underwent training solely on the MS COCO
dataset without leveraging pre-trained backbones. YOLOv7 intro-
duced several architectural modifications and a set of “bag-of-free-
bies”, contributing to enhanced accuracy without compromising
inference speed, with the only impact being on the training time. 

ELAN is a strategy developed to improve the learning and con-
vergence efficiency of a deep model by controlling the shortest
longest gradient path. YOLOv7 introduced E-ELAN, a feature
designed exclusively for models that include an endless number of
stacked computational blocks. E-ELAN increases network learn-
ing by shuffling and merging cardinality among distinct groups,
hence boosting the learning process without affecting the integrity
of the original gradient path. It attains the maximum accuracy,
exhibiting an astonishing 56.8% average precision (AP), outper-
forming all other real-time object detectors specifically intended
for GPUs, such as the V100, when working at 30 FPS or above (C.-
Y. Wang et al., 2023). Source code: https://github.com/
WongKinYiu/yolov7

YOLOv8
YOLOv8 uses two loss functions to increase its performance.

The CIoU and DFL loss functions are utilized for bounding box
loss, whereas binary cross-entropy is employed for classification
loss. These loss functions have been demonstrated to increase
object detection performance, especially when dealing with tiny
objects. The YOLOv8-Seg model has a prediction layer and five
detection modules, which are similar the detection heads of
YOLOv8. YOLOv8 has a semantic segmentation component
known as YOLOv8-Seg. This model has exhibited leading perfor-
mance on a range of object detection and semantic segmentation
examinations, all while sustaining speedy processing and effec-
tiveness. The model uses a CSPDarknet53 feature extractor as its
backbone, followed by a C2f module instead of the usual YOLO
neck architecture. For the prediction of semantic segmentation, the
C2f module is followed by two segmentation heads. It also sup-
ports different integrations for labelling, training, and deployment.
According to the MS COCO dataset test-dev 2017, YOLOv8x
achieved an average accuracy (AP) of 53.9% with an image size of
640 pixels. This is a huge improvement compared to YOLOv5’s
AP of 50.7% on the identical input size 12. YOLOv8x gets a speed
of 280 frames per second (FPS) when running on an NVIDIA
A100 with TensorRT, as indicated in the paper by Terven and
Cordova-Esparza (2023). Source code: https://github.com/ultralyt-
ics/ultralytics

YOLOv9
Yolov9 involves the use of PGI (Programmable Gradient

Information) and a lightweight network called GELAN
(Generalised Efficient Layer Aggregation Network). PGI is an
auxiliary supervision framework developed to solve information
bottleneck problems such as the loss of information during the
feedforward mechanism. PGI consists of three components: main
branch, auxiliary reverse branch and multi-level auxiliary branch.
An auxiliary reversible branch has been implied in PGI to retain
the information that has been lost due to an information bottleneck.
By introducing GELAN (formed by combining CSPNet and
ELAN), they improved the model’s architecture and reduced the
information bottleneck (Tishby and Zaslavsky, 2015) which gener-
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ally occurs during the feedforward mechanism. C.-Y. Wang et al.
(2024) used the MS COCO dataset to validate the model with other
models. The training was done based on train-from-scratch object
detection and a total training of 500 epochs was done. From Figure
2, we can see that YOLOv9 performed well by utilizing fewer
parameters only. They also conducted ablation studies and found
CSP block with ELAN has given good results, accuracy shows a
linear relationship for 2 and more than 2 depth of ELAN and CSP
block. Source code: https://github.com/WongKinYiu/yolov9

Metrics for measuring the accuracy of YOLO 
Mean average precision

For analysis of the efficiency of object identification and seg-
mentation, we often use a metric called mean average precision
(mAP). Algorithms such as SSD, YOLO, and R-CNN use mAP to
measure their performance. This statistic is often employed in
benchmark challenges, including Pascal, VOC, COCO, etc. The
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Figure 2. Comparison chart of YOLOv9 with other start of art object detection.

Figure 3. YOLO and other state-of-the-art object detectors speed comparison.
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procedure requires obtaining the mean of average accuracy (AP)
values, obtained across recall values that vary from 0 to 1. The
mAP formula incorporates sub-metrics such as
- Confusion matrix
- Intersection over Union (IoU)
- Recall 
- Precision

Confusion matrix 
Confusion matrix is a highly famous measure utilized while

solving classification difficulties. It can be applied to binary clas-
sification as well as to multi-class classification issues. Confusion
matrices represent counts from predicted and actual values. The
result “TN” stands for true negative which shows the number of
negative situations identified accurately. Similarly, “TP” stands for
true positive which shows the number of positive cases identified
accurately. The term “FP” shows a false positive value, i.e., the
number of actual negative cases classed as positive; while “FN”
means a false negative value which is the number of actual positive
examples classified as negative. To obtain a confusion matrix,
users need to pass real values and expected values to the function
(Kulkarni et al., 2020) (Figure 3).

Intersection over union (IoU)
Bounding boxes: Bounding boxes are rectangular zones that are

drawn around the object of interest in images. We use x and y as coor-
dinates to represent the coordinates of the bounding boxes. Object
detection methods such as YOLO, CNN, and SSD use bounding
boxes with probabilistic classes for identified objects (Breuers et al.,
2016). Tracking of objects, instance segmentation (Hsu et al., 2019),
and scene understanding were done in images using bounding boxes.

Intersection over Union (IoU): For the assessment of bounding
boxes, we use IoU metrics. It involves the quantification of overlap
between the predicted boxes and the ground truth boxes. IoU is the
ratio of the area of interest of two bounding boxes and their area of
union (Figure 4). The standard Pascal Visual Object Classes
(VOC) Challenge 2007 requires that IoU values surpass 0.5 to be
considered acceptable (Cowton et al., 2019).

Mathematically,

where Area of Intersection is the region where both the predicted
and ground truth bounding boxes overlap, and Area of Union is the
combined region covered by both the predicted and the ground
truth bounding boxes.

Intersection over Union values range from 0 to 1. IoU of zero
indicates no overlap between the ground truth bounding boxes and
the predicted bounding boxes. IoU of one indicates the perfect
match i.e. ground truth boxes were precisely aligned with the pre-
dicted bounding boxes. Figure 5 represents the threshold values to
check whether the predicted value is true positive or false positive.
For example, if the acquired IoU value exceeds the predefined
threshold (e.g., 0.6) the predicted value will be true positive other
than this the predicted value is treated as false positive.

Precision and recall 
Precision and recall serve as commonly employed and

favoured metrics in classification tasks. Precision assesses the
model’s accuracy in predicting positive values, thus quantifying
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the correctness of positive predictions. This measure is alternative-
ly referred to as the positive predictive value. Recall, also termed
sensitivity, evaluates a model’s capability to predict positive out-
comes effectively (Chen, 2021; Pedregosa et al., 2011).

A good F1 score suggests good precision and recall values
were attained. 

TP (true positive) = the objects were detected as that object.
FP (false positive) = objects other than those that were detected as
those objects.
FN (false negative) = objects were not detected as those objects.

Non-maximum suppression algorithm
Non-maximum suppression (NMS) is employed as a post-pro-

cessing methodology to enhance object detection by mitigating the
occurrence of overlapping bounding boxes and enhancing overall
accuracy. During the object detection process, the algorithm com-
monly produces numerous bounding boxes around the desired
object, each accompanied by distinct confidence scores (Figure 6).
To eliminate redundant and repetitive boxes and retain only the
most accurate ones, we utilize NMS (Hosang et al., 2017).

General steps of NMS algorithm followed by 
Subramanyam (2021)
i) Confidence threshold and IoU threshold values are defined.
ii) Bounding boxes are sorted in descending order by confidence.
iii) If boxes have a confidence lower than the confidence thresh-

old, they are removed.
iv) Then, a loop is executed, keeping the highest confidence box

as the first.
v) Calculation of IoU of the current box is done with every

remaining box that belongs to the same class.
vi) If the IoU of the two boxes exceeds the IoU threshold, the box

with lower confidence from our list is removed.
vii) This step is repeated until we have gone through all the boxes

in the list.

YOLO architecture and design principles 
YOLO partitions an image into a grid with dimensions S x S.

Within each grid cell, predictions are made for B bounding boxes
and their corresponding confidence levels. The confidence of an
object indicates the reliability and accuracy of the bounding box
that both identifies and classifies the object (Štancel and Hulič,
2019). The core idea guiding the detection of an object within any
grid cell is that the centre of the object must be situated inside that
specific grid cell. The detection of a particular object is attributed
to the responsibility of the grid cell, aided by an appropriate
bounding box (Diwan et al., 2023). The grid cell forecasts param-
eters for a singular bounding box, with the initial five parameters
being specific to that bounding box. However, the remaining
parameters are common to all bounding boxes within the same
grid, regardless of the bounding boxes present. 
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Figure 4. Visual representation of intersection over union (IoU).

Figure 5. Evaluation of IoU.
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The variable  denotes the probability of an object being present
in the grid through the associated bounding box. The coordinates
bxw, by specify the centre of the predicted bounding box, while bw,
bh indicate the anticipated dimensions of the bounding box. The
term p(ci) signifies the conditional probability of the object belong-
ing to the ith class, given pc, where n is the total number of classes
or categories. In total, a grid cell generates (B × 5 + n) values,
where B represents the number of bounding boxes per grid cell.
The shape of the output tensor is S × S × (B × 5 + n) since we
divided the image into an S × S grid (Diwan et al., 2023).

The confidence score (cs) for each bounding box in a grid is
calculated by multiplying pc with IoU between the ground truth
and the predicted bounding box. If there is no object present in the
grid cell, the confidence score is set to zero. We calculate the class-
specific score (CSS) for each bounding box across all grid cells.
This score reflects both the probability of the class being present in
that box and the degree to which the predicted box accurately
aligns with the object. Typically, these bounding boxes vary in size
to accommodate different shapes and effectively capture various
objects, referred to as anchor boxes. The objective is to detect an
object in an image with a bounding box where the centre of the
object lies. However, multiple object centres may fall within the
same bounding box. The authors introduce the term “anchor
boxes” to denote the bounding boxes associated with a single grid
cell. Anchor boxes constitute a set of standardized bounding boxes,
by analysing the dataset and objects in it, the anchor boxes were
chosen. These selected anchor boxes aim to encompass most class-
es/categories by considering diverse combinations of width and
height, such as vertical, square, or horizontal rectangles, etc. This
ensures the representation of various aspect ratios and scales for all
objects present in the dataset.

The CNN demonstrates remarkable performance in extracting
features from visual input by efficiently transmitting low-level fea-
tures from the beginning convolutional layers to subsequent ones
that are present in a deep CNN. The key challenge lies in precisely
identifying multiple objects and determining their precise positions
within a single visual input. Effective handling of the YOLO object
detection problem is facilitated by two essential CNN features:
parameter sharing and the use of multiple filters.

Applications of YOLO in agricultural remote
sensing 

Detection of objects in satellite imagery
Benayad et al. (2023) employed YOLOv3 to discover

geomembrane basins using satellite imagery automatically. They
used 100 high-resolution satellite photos from Google Earth to
train the model for this endeavor. The algorithm focused on classi-
fying five main objects: geomembrane basins, crop areas, roads,
houses, and bare fields. To enhance the training process, over 300
basins were enclosed and taught using Darknet, chosen for its
exceptional precision and speed. During the evaluation of fresh
images, an average precision of 80.6% is achieved, with a preci-
sion of 83.3% and recall. However, YOLOv3 exhibited poor per-
formance when dealing with small or closely located objects.

Li et al. (2020) detected agricultural greenhouse (AG) in areas
of Baoding, Hebei province, China by comparing different algo-
rithms like faster R-CNN, YOLOv3, and SSD (single shot multi-
box detector). In their work they fused high resolution Gaofen-1 (2
m spatial resolution) and Gaofen- 2 (1 m spatial resolution) satel-
lite images for detection of AG. All the architectures were imple-
mented with the PyTorch framework (deep learning framework).
The darknet model of YOLOv3 was converted to the PyTorch
framework. By adaptation of the Feature Pyramid Network (FPN)
and multilabel classification YOLOv3, the detection is enhanced.
Among the different architectures, YOLOv3 performed well with
mAP (GF-1 and GF-2) of 90.4% with an FPS of 73. They conclud-
ed that to increase the detection quality we need to increase the
spatial resolution of the input images.

Tundia et al. (2020) in their studies detected minor irrigation
structures using Google Satellite images. They compared the speed
and accuracy of Faster R-CNN, YOLOv3, Tiny YOLOv3, and
RetinaNet. From this Tiny YOLOv3 has the least inference time
among the other architectures due to its reduced convolutional
layer but its accuracy is reduced (Tables 2 and 3).

Tree detection
For the detection of date palm in regions of the Arabian

Peninsula, North Africa, and the Middle East (Jintasuttisak et al.,
2022) used state-of-the-art YOLOv5 (small, medium, large, and
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Figure 6. Application of NMS to remove redundant bounding boxes.
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extra-large), YOLOv3, YOLOv4, and SSD300 are used. They ran-
domly selected 125 images captured using an RGB drone camera
from which they used 60% for training, 20% for validation, and
20% for testing then applied data augmentation which increased
the range of the training dataset by five times. From their studies,
they concluded that YOLOv5m (medium CNN depth) has per-
formed better than other architecture with mAP of 92.34% and
YOLOv5s has less training time (11.33 ms) because of their small
CNN network. Nurhabib and Seminar (2022) identified and count-
ed oil palm trees using YOLO with Citra satellite series (1, 2, 3)
images. Özer et al. (2022) carried out an inter-comparative analy-
sis of YOLOv5 where they compared the results of YOLOv5s,
YOLOv5m, and YOLOv5x for the detection of cherry trees in
Afyonkarahisar. A total of 889 images were obtained and 80%
were used for training rest for testing. YOLOv5s model performed
well and obtained precision, recall, and F1 scores of 0.983, 0.978,
and 0.980 respectively. Palm tree detection was carried out by
Ariyadi et al. (2023) using 500 UAV images. The detection is car-
ried out using YOLOv7 with and precision of 98.5%, recall of
98.17%, overall accuracy of 98.31%, and mean average precision
of 99.7%. For training, they used 80% of the data, and 20% of the
data was used for testing. For each image, the detection time
ranged from 17 ms to 18.4 ms. 

Monitoring forests enables us to tackle the loss of biodiversity
in forest ecosystems and tackle the effects of climate change.
Straker and colleagues (2023) in their studies counted the number
of trees and segmented the tree crowns using YOLOv5 and
Tessellation approach. They used the “For Instance” dataset which
consists of 4192 annotated images. The YOLO model performed
27% and 34% better than the Individual tree crown approach at
point densities of 50 and 10 points m-2 respectively.

In countries such as India transmission lines passes through
cultivation lands. It is important to monitor these transmission
lines to avoid damage by trees growing under them. Xu et al.
(2023) used YOLOv7 and YOLOv4 to classify tree species in
transmission line corridors. They classified trees into betel nut,
jackfruit, neem, banyan, rubber, and coconut trees with 9531,
4688, 1113, 2336, 2195 and 290 labels, respectively. The images
were collected through drones mounted with an MS600 pro multi-
spectral camera. They also applied image augmentations such as
flipping, random cropping, colour dithering, rotation, scaling and
affine transformation. Using three different band combinations,
i.e., R-G-B, NIR-R-G, NIR-G-B the images were inputted. From
this, YOLOv7 achieved an average accuracy of 75.77%. from the
different band combinations RGB composition acquired higher
mean mAP.

Weed detection
Etienne et al. (2021) used YOLOv3 for the identification of

monocot and dicot weeds in the fields of corn and soybean
research plots. They created four different training image sets with
images acquired from 10 m above ground level (AGL), 30 m AGL,
30 m and 10 m AGL, and 10 m GL with only dicot weeds. The
obtained images were reduced to 416 x 416 pixels before training.
Weed instances of 25,560 were manually annotated. 91.48% and
86.13% of average precision (AP) scores were obtained at a thresh-
old of 0.25.

Gallo et al. (2023) used UAV images due to their flexibility of
data acquisition and high-resolution capability and created 12,113
bounding box annotations from 3000 collected RGB images
through UAV. In their studies they used two datasets; one is specif-
ically developed for chicory plantations called the chicory plant
(CP) and another one is lincoln beet (LB). For detection, they used

YOLOv7 and obtained mAP@0.5, precision and recall of 56.6%,
61.3%, and 62.1% respectively using CP datasets. Using the LB
dataset, they obtained mAP, mAP for weeds, and mAP for sugar
beets from 51% to 61%, 67.5% to 74.1%, and 34.6% to 48%. For
spraying weedicide, Narayana and Ramana (2023) developed
object detection using YOLOv7 which trained using two datasets
are early crop weed detection dataset (contains 308 images) and
the 4weed dataset (contains 618 RGB images). They used 90% of
the dataset for training and 10% for the testing set. The model was
trained and tested in Google Colab which is a cloud-based environ-
ment. mAP of 99.6% was obtained for the Early Weed dataset and
78.53% mAP was obtained for the 4weed dataset.

Fruit detection
Kumar and Kumar (2023) used a new approach to object

detection applying a multi-head attention mechanism and depth
values to YOLOv7 for the detection of apples in an orchard. The
input data was acquired through DJI Mavic mini 3 and images
from the video were extracted and then annotated with depth label
creation and augmentations such as image mirroring, blurring of
image, noisy image, etc we have done on the input. This modified
YOLOv7 consists of three detection heads which also help to
detect the depth of the apple in the orchard, which is further used
to estimate distribution and density. In the end, YOLOv7 couldn’t
be able to identify all apples while detection but the modified
YOLOv7 (i.e., multi-head detection mechanism) detected almost
all apples which gave precision, recall, and F1 scores of 0.91, 0.96,
and 0.92, respectively. For better marketing, ripeness is an impor-
tant factor for tomatoes. Thus, tomatoes need to be harvested in the
correct stage. For this, (Appe et al., 2023) used a modified version
of YOLO called CAM – YOLO which used YOLOv5 for detecting
ripened tomatoes using convolutional block attention model
(CBAM). By this, they achieved an accuracy of 88.1% and per-
formed better than the base YOLO. A tomato health monitoring
system was developed by Quach et al. (2024) by a combined
method of Mobilenetv2 and YOLOv8 for the classification, count-
ing, and detection of tomato. YOLOv8 performed well in the
detection of small objects because of the replacement of the C3
model in YOLOv8 from the C2f model used in YOLOv5 (Sohan et
al., 2024). For annotation, they used RoboFlow and divided the
dataset into 6:2:2 ratios for training, validation, and testing respec-
tively. An image resolution of 640 x 640 is used for training for the
development of the YOLOv8m and MobileNetv2 models. They
achieved 95.76%, 95.74%, and 95.75% of precision, recall, and
F1-Score respectively for YOLOv8m and MobileNetv2 models. 

Fukada et al. (2023) used YOLOv5 (pre-trained using the
COCO 2017 dataset) to analyse tomato growth using industry
camera devices. This implementation of YOLOv5-based object
detection reduced the effort required to analyse crop growth by
80%. Lawal (2021) detected tomatoes in complex environments
using YOLO-Tomato (a modified version of YOLOv3). They
divide the models into three types. Such as YOLO-Tomato-A,
YOLO-Tomato-B and YOLO-Tomato-C. YOLO-Tomato-C has a
mish activation function with a front detection layer (FDL) and
SPP outperformed the other two types by producing an AP of
99.5%. The use of SPP results in improved AP of the model com-
pared to the other two models. Fruits such as bananas, apricots,
apples, and strawberries ripen faster than other fruits. Detection of
ripened strawberries in fields by traditional methods is time-con-
suming and results in spoilage of fruits. An et al. (2022) developed
a strawberry growth detection algorithm based on YOLOX.
Though the model size remains the same as YOLOX, it has 3.64%,
2.04% and 4.08% higher accuracy, recall and precision respective-
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ly. This model also solves problems such as the low accuracy of
models at complex environments. Chen et al. (2023) has overcome
the dense and occluded grape detection and missing detection of
grapes by developing a lightweight model called GA-YOLO. In
this model, SE-CSPGhostnet is designed and introduced in the
backbone with 82.79% reduced parameters. It has a mAP of
96.87% and a detection speed of 55.867 FPS. Using artificial intel-
ligence as a classifier and cameras as sensors (Chen M.-C. et al.,
2022) identified the external quality of fruits such as apples,
oranges and lemons based on size, height, width, etc. This reduces
the labour intensiveness and improves the work speed. They used
the YOLOv3 algorithm for fruit detection and acquired an accura-
cy of 88% by testing on 6000 images. Detecting cherry fruits in
open environments results in reduced accuracy due to shading.
Thus, Gai et al. (2023) introduced an improved version of
YOLOv4 called YOLOv4-dense which has a modified backbone
of CSPDarknet53 combined with DenseNet. Image augmentation
such as flipping, zooming, colour gamut changing, etc., were
applied on input images. Also, they changed the rectangular
bounding boxes into circular bounding boxes. By this the algo-
rithm’s speed is increased and feature extraction is also improved.
This model produced 0.15 higher mAP than YOLOv4.

With the help of computer vision, we can reduce input costs,
and labour costs and increase production efficiency. Gremes et al.
(2023) counted green oranges directly from trees with green leaf
backgrounds using YOLOv4. The performance of used YOLOv4
model was compared with an optimal object detector model, where
in the captured video each orange were detected frame by frame.
Thus, by combining these two techniques double-counting errors
were reduced and the detected and actual oranges were almost
equal. The algorithm obtained an mAP50, mAP50:95, precision,
recall, F1-score, average IoU of 80.16, 53.83, 0.92, 0.93, 0.93 and
82.08%, respectively.

Disease detection
Amarasingam et al. (2022) used a one-stage object detector -

YOLOv5 for detecting white leaf disease in sugarcane using DJI
Phantom 4 equipped with RTK technology in regions of eastern Sri
Lanka. The obtained images were augmented using Python aug-
mentor package 0.2.9. 1200, 240, and 240 images were used for
training, testing, and validation process. They conclude, that
among the different algorithms used YOLOv5 outperformed other
algorithms in precision, mAP@0.5. mAP@0.95 and has a very
small model size of 14MB when compared to YOLOR, DETR, and
Faster R-CNN. Amarasingam et al. (2022) conducted object detec-
tion using XGB, RF, DT, and KNN in the same fields and obtained
very little accuracy than YOLOv5. Mathew and Mahesh (2022)
used YOLOv3 for disease detection in apples. They identified dis-
eases visible in apple tree leaves such as black rot, cedar rust, and
apple scab. they classified the image dataset into four classes, and
for each class for training and testing, they utilized 1500 and 500
images respectively. At the 700th iteration, they get an average loss
of 0.6010. (da Silva et al., 2023) their studies for the detection of
diseases in Citrus used YOLOv3 and Faster RCNN for detection
tasks and concluded YOLO was faster than Faster R-CNN which
utilizes less computation power when compared to Faster RCNN.
They used LabelImg (Tzutalin, 2015). YOLOv3 and faster R-CNN
were run on Keras back-end and evaluated using mAP. While
detection they used GPS of mobile to map how the infection spread
through the orchard spatially. To detect crop leaf diseases, Dai and
Fan (2022) used YOLOv5- CAcT and Plant Village and AI
Challenger datasets. The model achieved an accuracy of 94.24%
and achieved 59 crop disease categories and 10 crop species with

an average inference time of 1.563 ms and a model size of 2 MB.
Madhurya and Jubilson (2023) detected and classified plant

leaf disease using the YOLOv7 framework called YR2S (YOLO-
Enhanced Rat Swarm Optimizer - Red Fox Optimization (RFO-
ShuffleNetv2)). They used PCFAN for the generation of feature
maps. The model was detected and classified with a high accuracy
of 99.69%. Bandi et al. (2023) used YOLOv5 for leaf disease and
used U2-Net to remove the background of the affected leaf. They
also used a vision transformer for classifying the disease into dif-
ferent stages such as high, medium, and low. They used open
datasets like PlantDoc and Plant Village. They achieved an F1
score of 0.57 and a confidence score of 0.2 for YOLOv5 in disease
detection. Bachhal et al. (2023) in their studies used CCN+YOLO
compared with other models for the detection of maize plant dis-
ease. They used the Plant Village dataset with 100 images of com-
mon rust, 50 images of southern rust, 30 images of maize leaf
blight, 30 images of turcicum leaf blight, 70 images of grey leaf
spot, and 90 health leaf images. To detect verticillium fungus in
olive trees, Mamalis et al. (2023) different models of YOLOv5
such as nano, medium, and small. For annotation they used the
LabelImg package and classified them as healthy and damaged has
withered effect. These images were trained in two image sizes
1216 x 1216 and 640 x 640. The YOLOv5m with model input of
640 x 640 size outperformed other models in their studies. They
concluded that as the input size decreases and increases in model
capacity, the performance increases. Pine Wilt Disease (PWD) is
one of the most dangerous diseases in forest regions because of its
rapid spread and management challenges. Traditional methods
have more challenges such as excessive time consumption and
poor accuracy. Detection of PWD in forest regions helps policy-
makers to manage the situation based on the results. Zhu et al.
(2024) used YOLOv7-SE for the detection of PWD from high-res-
olution helicopter images. The model achieved a precision rate of
0.9281, F1 score of 0.9117 and a recall of 0.8958. Similarly, Wu et
al. (2024) used YOLOv3 for detecting PWD from UAV images.
They used the CIoU loss function for detecting forest pests and dis-
eases. Yao et al. (2024) developed a model called Pine-YOLO
(modified version of YOLOv8) which identifies PWD. This model
mAP@0.5 at 90.69%, mAP@0.5:0.95 at 49.72%, recall at 85.72%,
precision at 91.31% and F1-score at 88.43%.

Crop detection
Espinoza-Hernández et al. (2023) determined agave plant den-

sity using high-resolution RGB images captured through remote
pilot drones. They used YOLOv4 and YOLOv4 tiny for accurate
detection at different phenological stages and produced a mean
average accuracy of 0.99 for both architectures with 0.95 and 0.96
F1 Score for YOLOv4 and YOLOv4 tiny respectively. Qin et al.
(2021) developed an algorithm from YOLO called Ag-YOLO
which was operated in NCS2(Intel Neural Compute Stick 2). They
also compared the developed model with YOLOv3 – Tiny. It is
seen that Ag- YOLO outperformed YOLOv3 – Tiny producing a
higher accuracy of 0.9205 (F1 Score) and a higher FPS of 36.5
which is two times faster than Tiny YOLOv3 using 12x fewer
parameters. Counting rice seedlings traditionally is time-consum-
ing and labour-intensive leading to errors. Yeh et al. (2024) devel-
oped a YOLO-based approach for counting and marking the loca-
tion of rice seedlings in the field using a UAV UAV-based
approach. In their studies, they used YOLOv4 for counting the
seedlings. Though YOLO models are weak in detecting small
objects they made changes in images by making data augmentation
(image cropping) and changes in the activation function. They
implemented the Mish function to improve the accuracy of archi-
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tecture. They utilized the UAV dataset provided by AIdea (25 rice
images with a resolution of 3000 x 2000, 19 images with a resolu-
tion of 2304 x 1728). The experiment was conducted in six models,
and it was found that model 6 (modified YOLOv4 with mish acti-
vation function) had given accuracy of 0.97, an average precision
of 0.917, and an F1-score of 0.91. Wang Y. et al. (2023) in their
studies proposed a YOLOv5-AC model for detecting the efficiency
of uncrewed rice transplanters. The model achieved an accuracy of
95.8% and F1 score of 93.39%. Lu et al. (2023) modified YOLOv8
for UAV-based object detection and developed a model for precise
agriculture. When compared with YOLOv8-N, this model per-
formed well by obtaining 0.921,0.883,0.937and 0.565 precision,
recall, AP50 and AP50:95 respectively. Pu et al. (2023) used a
modified version of YOLOv7 called Tassel-YOLO which used
GSConv and VoVGSCSP module in the neck part and SIoU loss
function in the head part. Tassel-YOLO achieves 96.14%
mAp@0.5, with a counting accuracy of 97.55%. They used the
global attention mechanism (GAM) (Liu et al., 2021) which
improves the feature representation ability through channel atten-
tion and the accuracy of spatial data through spatial attention
(Wang et al., 2018). Images were acquired using a DJI Mavic
drone and the image resolution was reduced to 640 x 640 during
the detection phase. Due to a lack of knowledge and experience,
coffee farmers find it difficult to harvest coffee fruits at the time of
harvest. Bazame et al. (2022) detected and classified coffee fruits
into unripe(green), overripe(dry) and ripe(cherry) using YOLO.
They used YOLOv3 and YOLOv4 for detection and classification.
YOLOv4 and YOLOv4-tiny models performed well and obtained
mAP of 81% and 79%. Camacho and Morocho-Cayamcela (2023)
used YOLOv8 for the segmentation and detection of tomatoes at
different maturity stages. YOLOv8 produced an R2 of
0.809,0.897,0.968 in ripe, half-ripe and green categories respec-
tively. Tea quality is based on the correct identification and har-
vesting of perfect tea buds which improves the industry’s profit.
But the harvest is labour-intensive and time-consuming. By com-
bining the YOLOv3 algorithm, semantic segmentation, minimum
bounding rectangle and skeleton extraction (C. Chen et al., 2022)
located the picking point of tea buds. YOLOv3 obtained an aver-
age accuracy of 71.96% for tea bud identification.

Wang C. et al. (2023) developed a modified version of YOLO
called YOLOv5n for accurate and rapid target detection. This
model can be used in lightweight applications and real-time detec-
tion. It also compared with other versions of YOLO and obtained
an average accuracy of 95.2%.

Discussion

YOLO in agriculture
Monitoring of crops using drones is becoming popular in the

upcoming days. We can make the YOLO algorithm use RGB
images as well as multispectral bands to analyse chlorophyll con-
tent and monitor the stress condition of crops in real-time
(Thomson and Sullivan, 2006). Increased fertilizer application
results in wastage of input and has adverse effects on the environ-
ment. Using YOLO, we can apply fertilizers to specified crops
through IoT technology. By this, we can reduce the input cost,
reduce the wastage of the raw materials, and protect the environ-
mental impact. Weeds play a crucial role in the agricultural field
since they result in reduced yield of crops due to nutrient uptake by
them (Nath et al., 2024). In some studies, weeds were detected and
management practices using YOLO algorithms. By implementing
YOLO, we need to distinguish between crops and weeds to apply
site-specific management practices such as applying weedicides.
By collecting high-resolution images of croplands through drones
we can predict the yield and plan harvesting. The data obtained can
be integrated with weather data, satellite imagery, and crop models
to create a decision support system for farmers (Table 4).

Conclusions
In agriculture, YOLO has been used for crop detection (Sneha

et al., 2024), fruit detection (Appe et al., 2023), and pest and dis-
ease detection (Amara et al., 2023). However, the base YOLO
algorithm struggles with identifying small objects, which poses
challenges for detecting crops like rice, sorghum, and maize. To
address this, modified versions like Tassel-YOLO for maize tassel
detection (Pu et al., 2023), Ag-YOLO for broader agricultural
studies (Qin et al., 2021), and a modified YOLOv4 for cherry
detection (Gai et al., 2023) have been developed. Further enhance-
ments include modifying the activation function with the mish
function and using a modified PANet in YOLOv4 to improve the
counting and locating of small objects (Yeh et al., 2024). For real-
time crop detection using UAVs, computational efficiency is cru-
cial. A modified version of YOLOv7, called YR2S, has been used
for disease detection, achieving a high accuracy of 99.69%
(Madhurya and Jubilson, 2023). While YOLO has been increasing-
ly used in agriculture, newer versions have not yet been widely
adopted. In other applications, such as livestock management, a
modified YOLOv3 has been used for detecting and monitoring
cow estrus behavior, though challenges remain due to size varia-
tions in the animals. The introduction of the DenseBlock structure
improved detection in these cases (Z. Wang et al., 2024).
Developing software for UAVs compatible with low-computation
YOLO models is highly valued. The latest YOLOv9 model, which
requires less computational power, can enhance real-time perfor-
mance on low-processing devices. YOLO has shown significant
potential and versatility in agriculture and other fields, ongoing
improvements and adaptations are necessary to fully leverage its
capabilities in real-world applications.
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Table 4. Future direction and research opportunities.

Research area        Description                                      Potential impact on agriculture                     Current state of research

Real-time Processing                  Need to enhance YOLO for quick inference time.            Enables real time monitoring and helps in decision making                         Current improvements in architecture of model 
                                                                                                                                                                                                                                                                            and hardware acceleration
Multispectral Imaging                 Multispectral data integrating with YOLO.                       Better detection of physiographic character study and disease detection      Combining multispectral camera with deep learning
Integration with Robotics           Monitoring and harvesting by integrating YOLO.            improves efficiency and automation of labour-intensive tasks                      Computer vision combining with robotics in agriculture
Transfer learning                         YOLO adopts to new datasets quickly                               Less annotated data is sufficient                                                                      Pretrained models like Ag-YOLO are developing
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