
Introduction
An energy audit involves analyzing the energy consumption

and usage within a system or process to enhance efficiency, mini-
mize waste, and implement eco-friendly technologies and renew-
able energy sources (Menghi et al., 2019). Enhancing energy man-
agement leads to cost reduction, advancement of sustainable tech-
nologies, and protection of the environment. The greenhouse gas
emissions resulting from energy usage, including carbon dioxide,
methane, and nitrogen oxide, have a significant impact on climate
change and global warming (Liu et al., 2020). In various coun-
tries, the breeding of ostriches for economic and industrial purpos-
es has experienced notable growth in recent years. Ostriches, large
birds native to dry and desert regions, are primarily raised for their
meat. This meat is highly sought after by consumers for its deli-
cious flavor and high protein content, making ostrich breeding a
lucrative venture (Manap et al., 2002; Shibak et al., 2023). Due to
the increase in demand for ostrich products in global and local
markets, the number of ostrich breeding units has also increased in
recent years. For example, in 2019, the production of ostrich meat
in the world has reached more than 100 thousand tons and this fig-
ure is growing. Also, the production of ostrich eggs reaches more
than 1000 tons per year. These statistics show that breeding
ostriches is developing as a growing and profitable industry

(Khalid et al., 2022; Adams et al., 1998). The energy consumption
in the production of meat and eggs from ostriches is influenced by
several factors, such as the quality of their diet, the conditions in
which they are raised, the utilization of advanced equipment and
technologies, and the overall volume of ostrich production
(Ramedani et al., 2019). The development and nourishment phas-
es of animals necessitate significant water intake, putting pressure
on water supplies and leading to shortages in regions with high
levels of meat production (Kolawole et al., 2023). The implemen-
tation of animal husbandry practices can have adverse effects on
animal health, productivity, and welfare. However, the adoption of
sustainable breeding methods has helped mitigate these impacts
(Llonch et al., 2017) The growth and feeding phases of animals
necessitate significant water intake, placing strain on water
resources and leading to shortages in regions with high meat pro-
duction. The use of fertilizers and polluted water in animal breed-
ing can result in water and soil contamination, harming the quality
of both and their biodiversity (Chau et al., 2015). Gather essential
materials for meat and egg production, ensuring they are sourced
from sustainable and recyclable sources. Ensure the quality of raw
materials by employing efficient processes to minimize emissions.
Attention should be paid to using optimal and low-energy process-
es, reducing greenhouse gas emissions, and reducing the produc-
tion of biological and non-biological waste for production
(Kumar et al., 2023). 

Sophisticated techniques like artificial neural network (ANN)
and adaptive neuro-fuzzy inference system (ANFIS) can be
employed to forecast energy usage, environmental consequences,
and exergy in the breeding of ostriches for meat and egg produc-
tion. These methods can predict energy consumption and environ-
mental impacts and exergy based on available data and observed
patterns (Kaab et al., 2019. ANN consider the complex production
patterns of meat and egg-laying ostriches and make predictions
based on them. Also, ANFIS investigates environmental and exer-
gy effects in ostrich production and quantitatively measures and
predicts them. To ensure quality, it is important to match the sup-
ply of nutrients to the needs of the ostrich during growth. South
African trials have assessed feed value and nutrient requirements,
but direct applicability to other countries is questionable due to
environmental differences and feed resources. Ostriches have bet-
ter feeding efficiency and can use high fiber feeds. More nutrition-
al research is needed on feed ingredients, nutrient requirements,
crop-specific diets, and grazing management strategies (Shibak et
al., 2023). Brand et al. (2003) suggests that a diet with a minimum
energy content of 8.5 MJ kg-1 and protein content of 105 g kg-1

should be used for breeding female ostriches to maintain optimal
egg production. The environmental impacts of poultry production
indicate that poultry farms are mainly accountable for the assessed
environmental consequences. The primary contributors to these
impacts are feed production, including chemical use and energy
requirements, as well as on-farm emissions from organic waste
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decomposition. Ultimately, a multi-objective optimization model
was utilized to minimize environmental consequences and maxi-
mize economic advantages. The chosen option resulted in a
15.14% decrease in environmental indicators per unit of perfor-
mance (López-Andrés et al., 2018). Proper feed and nutrition man-
agement offer an effective strategy for enhancing sustainability by
enhancing livestock productivity and minimizing the environmen-
tal footprint of livestock operations. In the face of a shifting global
climate, prioritizing animal welfare and environmental conserva-
tion is crucial for promoting sustainability in animal agriculture
and meat processing (Ponnampalam et al., 2023). The LCA high-
lights the importance of addressing climate change, showing that
the emissions are 5.58 kg CO2 eq kg-1 per egg produced.
Introducing an eco-efficient program that prioritizes energy usage
could result in a 49.5% cut in overall energy usage and a 56.3%
reduction in environmental footprints (Estrada-González et al.,
2018). The analysis of environmental impact assessments for live-
stock products revealed that opting for environmentally friendly
choices in one’s diet can significantly reduce environmental harm.
Among livestock products, the production of 1 kg of beef was
found to have the largest land and energy footprint, along with the
highest global warming potential (GWP). This was followed by the
environmental impact of producing 1 kg of pork, chicken, eggs,
and milk. The production of meat (pork, chicken, beef) was
notably more impactful compared to producing 1 kg of milk and
eggs, primarily due to the higher water content in milk and eggs.
Furthermore, the production of 1 kg of beef protein had the most
significant effect, followed by pork protein and chicken protein (de
Vries et al., 2010).

Considering that ostrich breeding is currently known as one of
the important industries in many countries, forecasting energy con-
sumption and determining environmental indicators can be used as
one of the effective methods to improve performance and optimize
ostrich breeding. The use of artificial intelligence as one of the
advanced and new technologies can be used as one of the effective
methods in predicting energy consumption and determining envi-
ronmental indicators in ostrich breeding. By using artificial intelli-
gence algorithms such as neural networks, it is possible to collect
more accurately and quickly the necessary information to predict
energy consumption and determine environmental indicators. The
uniqueness of the comparative analysis of energy use and environ-
mental emissions in ostrich meat and egg production lies in its
examination of the energy consumption and environmental emis-
sions associated with ostrich meat and egg production. This study
provides valuable insights into the environmental impact of ostrich
farming, shedding light on the resources and emissions involved in
producing ostrich meat and eggs. The implications of this research
extend to human health, as understanding the environmental foot-
print of ostrich farming can inform sustainable practices that ben-
efit both the environment and consumers. By focusing on ostrich
production specifically, this analysis offers a novel perspective on
sustainable meat and egg production and highlights the potential
implications for human health and environmental sustainability.

Materials and Methods
Study area

The influence of latitude on the climate of Qazvin province is
minor, as altitude exerts a more pronounced impact on temperature
fluctuations. As one ascends in altitude, temperatures decline, lead-
ing to cooler conditions in the mountainous areas and highlands in
contrast to the warmer lowlands and valleys. Additionally, external

factors like air masses further shape the climate of Qazvin
province. These include the arrival of humid western air masses,
cold and arid northern air masses, and hot and dry southern air
masses from various directions and seasons, each contributing
unique characteristics to the region’s climate
(Ministry of Agriculture Jihad, 2001) In Figure 1, the positioning
of Qazvin province is depicted, indicating the site where data col-
lection from ostriches took place through a questionnaire. The
questionnaire encompassed diverse input origins, details from
manufacturers, and product functionality. To enhance the precision
of data gathering and results, a random sampling approach was
employed within the designated research area. The sample size of
55 questionnaires was determined using the Cochran method out-
lined in Eq. 1 for this study (Cochran, 1997).

                                                          

(Eq. 1)

where n is the required sample size, N is the number of orchards
per target population, z is the reliability coefficient (equals to 1.96,
denoting 95% confidence level), p is the estimated proportion of an
attribute that is present in the population (equals to 0.5), q is 1-p
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Figure 1. The geographic location of the examined area in Qazvin
Province, Iran.
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(equals to 0.5), and d is the permitted error ratio deviation from the
average population (equals to 0.05).
Energy

Conducting energy analysis can assist manufacturers in
enhancing production process efficiency and optimizing energy
utilization. By adopting more consistent and energy-efficient prac-
tices, businesses can contribute to environmental preservation and
mitigate the adverse impacts of energy consumption on the envi-
ronment (Menghi et al., 2019). The assessment of energy con-
sumption factors involved documenting the usage of electricity,
gas, fuel, and other energy sources within the ostrich production
unit. The study scrutinized energy usage across different activities
like lighting, heating, cooling, transportation, processing, and
packaging by examining pertinent factors. Additionally, the
research entailed measuring and documenting the energy con-
sumption of diverse equipment such as ostrich breeding devices,
processing and packaging machinery, and other apparatus associ-
ated with feed supply. An essential aspect of this study was the
consolidation and detailed analysis of the gathered data to assess
energy consumption efficiency and pinpoint areas for enhance-
ment. Energy analysis in ostrich breeding units involves assessing
the energy inputs, outputs, and efficiency of the operations. This
analysis can help identify areas for improvement in energy use and
resource management. Some key components of energy analysis in
ostrich breeding units may include:

Energy inputs. This involves quantifying the energy used in
various aspects of ostrich breeding, such as feed production, heat-
ing and lighting, transportation, and processing. This can include
direct energy sources such as electricity and fuel, as well as indi-
rect energy inputs such as embodied energy in materials and equip-
ment.

Energy outputs. This involves evaluating the energy content
and value of the products and by-products of ostrich breeding, such
as meat, leather, feathers, and eggs. Understanding the energy out-
puts can help assess the overall energy efficiency and sustainability
of the operation. Meat and eggs are our sensitive points.

Energy efficiency. Assessing the efficiency of energy use in

ostrich breeding units can help identify opportunities for improve-
ment. This can include evaluating the efficiency of heating and
lighting systems, feed conversion ratios, and transportation effi-
ciency.

Renewable energy potential. Assessing the feasibility of incor-
porating renewable energy sources like solar or wind power into
ostrich breeding facilities can aid in decreasing dependence on
non-renewable energy sources and cutting down on overall energy
expenses.

Through a comprehensive energy assessment, ostrich breeding
facilities can pinpoint areas for lowering energy usage, enhancing
efficiency, and boosting sustainability. This proactive approach can
result in cost reductions, decreased environmental footprint, and
enhanced long-term sustainability of the operation. Energy con-
sumption data for ostrich production units was gathered via in-per-
son interviews as outlined in Table 1. The interview provided the
possibility of personal communication between the interviewer
and the interviewee. The information was received from the face-
to-face interviews accurately and completely, and this can lead to
a better analysis and interpretation of the information. An opportu-
nity was created to promote communication between the two par-
ties and this communication was useful in various fields, including
solving problems, creating cooperation and effective interaction
between the two parties (May et al., 2015).

Energy use efficiency is defined as the proportion of useful
energy output to total energy input in a given system or process,
expressed as output energy (MJ) divided by input energy (MJ).
This metric assesses the effectiveness of energy utilization and can
be applied across different sectors including industrial operations,
transportation, and building infrastructure. A higher energy use
efficiency signifies that a system can generate more beneficial out-
put with the same energy input, leading to reduced waste and
improved overall performance (Alluvione et al., 2011). Enhancing
energy efficiency is a key objective in reducing energy consump-
tion, lessening environmental impact, and optimizing resource use.
This can be accomplished through advancements in technology,
enhancements in processes, and changes in behavior. Energy pro-
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Table 1. Energy inputs-outputs and energy coefficients in ostrich breeding units.

Items                                              Unit                                Energy equivalent (MJ unit–1)                                    References

Inputs                                                                                                                                                                                                                
        Human labor                                     h                                                                 1.96                                                   Ghasemi-Mobtaker et al., 2022
        Machinery                                         h                                                                 62.7                                                               Kaab et al., 2021
        Diesel fuel                                         L                                                                56.31                                                 Mohammadi Kashka et al., 2023
        Natural gas                                      m3                                                               49.50                                                   Nabavi-Pelesaraei et al., 2014
        Electricity                                       kWh                                                             12.00                                                             Kitani et al., 1999
Feedkg                                                                                                                             
        Corn                                                                                                                      7.90                                                              Kitani et al., 1999
        Barley                                                                                                                  14.70                                                             Kitani et al., 1999
        Alfalfa                                                                                                                  15.80                                                             Kitani et al., 1999
        Rice bran                                                                                                             14.57                                                             Kitani et al., 1999
        Wheat                                                                                                                  13.70                                                             Kitani et al., 1999
        Soybean meal                                                                                                      12.60                                                             Kitani et al., 1999
        Sugar beet pulp                                                                                                   16.80                                                             Kitani et al., 1999
        Vitamins and minerals                                                                                         1.59                                                              Kitani et al., 1999
        Salt                                                                                                                        1.59                                                              Kitani et al., 1999
Fatty acid                                                                                                                     37.00                                                             Kitani et al., 1999
        Ostrich chick                                    kg                                                               10.33                                                          Ramedani et al., 2019
        Outputs                                             kg                                                                                                                                                     
        Ostrich meat                                                                                                        10.33                                                          Ramedani et al., 2019
        Ostrich egg                                                                                                           7.28                                                           Ramedani et al., 2019
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ductivity is a measure of the economic output generated per unit of
energy input, with higher energy productivity indicating more out-
put for the energy used. Specific energy measures the energy con-
tent of a material per unit mass or volume, providing insight into
the energy required to produce a certain quantity of a substance
(Zhang et al., 2019).

Life cycle assessment 
The series of interconnected stages within a product or service

system, spanning from the extraction of natural resources to its
ultimate disposal, is referred to as the life cycle assessment (LCA).
LCA serves as a valuable tool for assessing the environmental
footprint of a product, process, or activity throughout its life cycle,
encompassing stages from raw material extraction to processing,
transportation, and disposal (van der Werf et al., 2020). Initially
utilized for product comparisons, such as evaluating the environ-
mental impact of disposable vs reusable items, today, LCA finds
diverse applications in governmental policies, strategic planning,
marketing strategies, consumer education, process enhancements,
and product design. It also serves as a foundation for global envi-
ronmental labeling and consumer education initiatives (Estrada-
González  et al., 2020). LCA is a method for examining potential
environmental and related aspects of a product or service (Lai et
al., 2022), involving the following key steps:
i) Compiling a list of relevant inputs and outputs.
ii) Evaluating the potential environmental impacts associated

with these inputs and outputs.
iii) Analyzing the results and their implications in alignment with

the study's objectives.
The first step in the study is determining the goal and scope of

application, which is crucial as it defines key elements such as pur-
pose, scope, and main hypothesis. This stage typically includes
defining the system, its boundaries, data quality, main hypothesis,
and limitations. In life cycle assessment, the functional unit serves
as a reference unit for comparing products or processes in terms of
resource consumption and emissions (Fnais et al., 2022). The
study focused on one ton of ostrich meat and egg production as the
unit of analysis for calculating environmental emissions. The goal
was to assess the environmental impact of ostrich production in
order to enhance its sustainability. This evaluation involved mea-
suring factors like water usage, energy consumption, greenhouse
gas emissions, and environmental degradation. By identifying
areas of improvement and implementing strategies to reduce neg-
ative environmental effects, the aim was to enhance the overall
environmental performance of ostrich production. Inventory anal-
ysis is a technical process that involves collecting data to quantify
the inputs and outputs of a system within a defined scope. This
includes measuring energy and raw material consumption, as well
as emissions to air, water, soil, and solid waste produced through-
out the entire life cycle of a product or service. To aid in this anal-
ysis, the system is broken down into subsystems or processes, with
data categorized in the life cycle inventory (LCI) database (Zhu et
al., 2022). Life cycle impact assessment (LCIA) is then used to
identify and characterize the potential environmental effects of the
system. This phase builds upon the information gathered in the
inventory analysis. The final stage of the LCA process is interpre-
tation, where results are synthesized to highlight key sources of
impact and suggest ways to mitigate them. ReCiPe2016 is com-
monly used in software like SimaPro to evaluate environmental
emissions. Interpretation also involves reviewing all steps of the
LCA process to ensure the consistency of assumptions and data
quality in relation to the study’s purpose and scope (Asem-Hiablie
et al., 2019). The relationship between the different stages of LCA

is depicted in Figure 2. The study utilized the ReCiPe 2016
methodology through the SimaPro software. The emphasis was on
determining the emissions index for pollutants during paddy pro-
duction and evaluating the consequent impacts on the ecosystem,
human health, and resources as endpoints. Utilizing Figure 3, mid-
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Figure 3. The impact of various energy sources on ostrich breeding
units in different production scenarios.

Figure 2. The ISO definition outlines the different phases of a LCA.
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points were identified and the impact of each mid-point was quan-
tified and combined using standard units.

ANN and ANFIS
The ANN model acts as an information processing system that

consists of artificial processing units called “neurons”. These neu-
rons are connected to each other in proximity and transmit infor-
mation to each other through connections (weights) (Dongare et
al., 2008). An ANN consists of several different layers, including
input layers, hidden layers, and output layers. The input informa-
tion from the environment enters the input layer and then through
various processes in the hidden layers, the information is trans-
ferred to the output layers to produce the desired output (Maind
and Wankar, 2014). One of the characteristics of artificial neural
network is that it can learn from input data and recognize patterns
and complex relationships based on them. Also, this model can
make predictions and rational decisions based on experience and
new data. ANN can be used to improve agricultural products.
These networks can be used to predict crop performance, diagnose
diseases and pests, optimize water and chemical consumption,
diagnose and predict weather conditions, and manage production.
By analyzing spatial and temporal data, neural networks can help
farmers improve their crops and improve agricultural performance
(Niaze et al., 2023).

ANFIS, which is a technique used to model complex systems
by combining the advantages of fuzzy logic and neural networks
(Hakim et al., 2013). In the field of energy consumption and envi-
ronmental indicators related to the production of meat and egg-lay-
ing ostriches, ANFIS can be used to analyze and predict the impact
of these activities on energy consumption and environmental fac-
tors. To develop an ANFIS model for energy consumption, you
need historical data on energy consumption in meat and egg pro-
duction, as well as related environmental indicators such as green-
house gas emissions, water consumption, and land footprint. The
purpose of this model is to create relationships between these vari-
ables and identify patterns and trends (Pahlavani et al., 2017). The
steps of developing an ANFIS model for energy consumption and
environmental indicators in meat and egg production are as fol-
lows:
i) Data related to energy consumption in meat and egg produc-

tion as well as environmental indicators such as greenhouse
gas emissions, water consumption and land footprint were col-
lected. This data was obtained from research studies, govern-
ment reports and industry databases.

ii) We cleaned the data by removing outliers, handling missing
values, and normalizing variables to ensure they were on the
same scale. This step is very important for accurate modeling.

iii) The data was divided into training and testing sets. The train-
ing set is used to train the ANFIS model, while the test set is
used to evaluate its performance. The ANFIS model learns the
relationships between energy consumption and environmental
indicators through an iterative process.

iv) The ANFIS model was validated by comparing its predictions
with the actual values of the test set. The performance of the
model was evaluated using criteria such as the average abso-
lute error, the root mean square of the error and the coefficient
of determination (R-squared).

v) To understand the relationship between energy consumption
and environmental indicators in meat and egg production, the
ANFIS model is analyzed. The most influential variables and
their impact on the results are identified.

Using this modeling technique, policy makers, researchers and
industry stakeholders can make informed decisions to promote

sustainable practices and reduce the environmental impact of
these activities (Subah and Nagalakshmi, 2021)

Coefficient of determination, mean square error and root
mean square error

The coefficient of determination (R2) measures the proportion
of the variance in the dependent variable that is predictable from
the independent variables. It ranges from 0 to 1, with 1 indicating
a perfect fit. The mean square error (MSE) is the average of the
squared differences between the actual and predicted values in a
regression model. It provides a measure of the average magnitude
of the errors in the model. The root mean square error (RMSE) is
the square root of the mean square error and provides a measure of
the average magnitude of the errors in the model in the same units
as the dependent variable. It is often used to compare the accuracy
of different models (Kanwisher et al., 2023). Eq2. 2, 3 and 4 show
R2, MSE and RMSE, respectively.

                                                          

(Eq. 2)

                                                          

(Eq. 3)

                                                          

(Eq. 4)

Results and Discussion
Energy results

The comparison of energy analysis results between egg and
ostrich meat production provides insights into energy consumption
and production. Table 2 outlines the energy inputs per 1000 pieces
for the respective product production. Meat production uses
1086825.54 MJ per 1000 pieces, while egg production uses
1197794.25 MJ per 1000 pieces. In contrast, meat production
yields 536182.33 MJ per 1000 pieces, while egg production yields
768610.90 MJ per 1000 pieces. Despite egg production requiring
more energy than meat production, it also yields more energy for
consumers. The energy consumption of each input for every 1000
pieces was calculated by multiplying it by its energy coefficient.
When considering protein supply per total energy consumption,
egg production is justified compared to meat.

The breakdown of inputs for meat and egg production is shown
in Figure 3. Natural gas consumption accounts for over 33.40% in
meat production and 34.03% in egg production, making it the most
significant contributor. Diesel fuel follows as the second most sig-
nificant energy consumer. These findings emphasize the impor-
tance of fuel and energy supply in ostrich breeding environments,
especially for egg production. However, feed (22.57%) and elec-
tricity (5.23%) consumption for egg production are lower than that
for meat production. As a result, feed supply does not play a crucial
role and does not significantly impact producers’ decisions.

The energy contribution of specific feeds, as shown in Table 2,
indicates that providing rice bran, sugarbeet pulp, vitamins and
minerals, and fatty acids for meat production significantly con-
tributes to total energy consumption. These ingredients are report-
ed to be less in quantity for egg production compared to meat. The
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variation in ingredient amounts between eggs and meat production
can be attributed to the differing nutritional and energy require-
ments of egg-laying ostriches versus meat-producing ostriches.
Egg-laying ostriches may require specific fatty acids, vitamins,
and minerals for egg production, distinct from the nutritional needs
of meat ostriches for overall growth and development. Therefore,
the energy contribution of each specific feed may vary depending
on the animal’s intended purpose and its specific nutritional
requirements.

Table 3 displays energy indicators comparing input and output
balance for eggs and meat. While eggs have an energy use efficien-
cy of 0.64, higher than meat’s 0.49, neither product reaches an effi-
ciency exceeding 1, indicating that energy output falls short of
consumption. Both eggs and meat have efficiencies below 1, sug-
gesting output is less than input, meaning production of these
foods requires more energy than they ultimately contain. Despite
this, eggs are more energy-efficient than meat. Energy productivity
of both is low relative to consumption, as shown by energy inten-
sity per kilogram, with meat consuming 21.06 MJ kg–1 and eggs
11.40 MJ. This indicates meat production is less energy-productive
than egg production. Such insights can guide resource allocation
and production processes to boost overall energy efficiency, given
the negative net energy output.

LCA results
Table 4 displays energy indicators comparing input and output

balance for eggs and meat. While eggs have an energy use efficien-

cy of 0.64, higher than meat’s 0.49, neither product reaches an effi-
ciency exceeding 1, indicating that energy output falls short of
consumption. Both eggs and meat have efficiencies below 1, sug-
gesting output is less than input, meaning production of these
foods requires more energy than they ultimately contain. Despite
this, eggs are more energy-efficient than meat. Energy productivity
of both is low relative to consumption, as shown by energy inten-
sity per kilogram, with meat consuming 21.06 MJ kg–1 and eggs
11.40 MJ. This indicates meat production is less energy-productive
than egg production. Such insights can guide resource allocation
and production processes to boost overall energy efficiency, given
the negative net energy output. Likewise, the amount of emissions
produced from energy utilization at ostrich breeding facilities can
differ based on the types of energy sources utilized, such as elec-
tricity, natural gas, or diesel, along with how effectively energy is
used and incorporated renewable energy sources. The emissions
associated with moving materials to and from ostrich breeding
sites may be affected by variables like distance traveled, mode of
transport, and the fuel efficiency of vehicles. Several aspects,
including feed manufacturing, waste management, energy con-
sumption, transportation, and water usage, have the potential to
influence emissions from ostrich breeding facilities operating
under different production schemes. Therefore, ostrich farmers
should consider these factors and implement strategies that lower
emissions and promote environmental sustainability, as highlight-
ed by Bhavani et al. (2023) and Guinée et al. (2010).

The results from the endpoints of the ReCiPe2016 approach
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Table 2. Amounts of inputs-outputs energy in ostrich breeding units under different production.

                              Ostrich (meet)                                   Ostrich (egg)
                                              Unit per ha      Energy use (MJ 1000 pieces -1)           Unit per ha                 Energy use (MJ 1000 pieces -1)

Items
        Human labor                             213.42                                     418.31                                          302.76                                                  593.41
        Machinery                                 772.21                                   48417.83                                       1096.94                                              68778.60
        Diesel fuel                                5616.21                                 316249.02                                      6352.34                                             357700.38
        Natural gas                               7332.66                                 362967.00                                      8233.55                                             407560.85
        Electricity                                 5034.19                                  60410.28                                       5222.18                                              62666.21
Feed                                                                                                                                                              
        Corn                                          3496.00                                  27618.46                                       3590.76                                              28367.02
        Barley                                       2331.98                                  34280.13                                       2458.42                                              36138.78
        Alfalfa                                      1603.17                                  25330.15                                       2070.18                                              32708.91
        Rice bran                                  7644.41                                 111379.09                                      6335.26                                              92304.78
        Wheat                                       1640.92                                  22480.71                                       1651.94                                              22631.67
        Soybean meal                           1372.00                                  17287.23                                       1425.47                                              17960.96
        Sugar beet pulp                        1254.64                                  21077.98                                       1250.05                                              21000.88
        Vitamins and minerals             1453.60                                   2311.22                                        1160.84                                                1845.73
        Salt                                             356.12                                     566.24                                          402.60                                                  640.14
        Fatty acid                                   544.78                                   20157.07                                        453.73                                               16788.26
Ostrich chick                                    1536.76                                  15874.75                                       2914.57                                              30107.60
Total energy use (MJ)                            -                                      1086825.54                                           -                                                   1197794.25
Output (kg)                                                                                                                                                                                                                
        Ostrich meat                            51905.35                                536182.33                                                                                                          
        Ostrich egg                                                                                                                                  105578.42                                           768610.90
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Table 3. Energy indices in ostrich farming facilities vary depending on the type of production.

Items                                                                                     Ostrich (meet)                                            Ostrich (egg)

Energy use efficiency (ratio)                                                                       0.49                                                                     0.64
Energy productivity (kg MJ–1)                                                                    0.04                                                                     0.08
Specific energy (MJ kg–1)                                                                          21.06                                                                   11.40
Net energy gain (MJ 1000 pieces–1)                                                     -550643.20                                                         -429183.35

Non
-co

mmerc
ial

 us
e o

nly



are available in Table 5. Positive figures indicate a detrimental
effect on the environment, while negative figures suggest a posi-
tive impact. Specifically, the positive values linked to all critical
4aspects associated with meat and egg production underscore the
harmful ecological repercussions of these goods. When comparing
the effect on human health from egg and meat production, with a
slight 0.23 DALY variance, it implies that egg production may

have a slightly more adverse effect on human health than meat pro-
duction. The ecological impacts of meat production on the ecosys-
tem (0.003 species.yr) and resources (9215.47 USD2013) are
deemed more favorable, indicating that meat production has a rel-
atively lower impact on both ecosystem and resource use com-
pared to egg production, according to the ReCiPe2016 method
(Figure 4). It’s crucial to note that these conclusions are based on
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Table 4. Direct emissions in ostrich breeding units under different production based on 1 ton.

    Ostrich (meet)                                                                           Ostrich (egg)

Emissions by diesel fuel to air (kg)                                                                                                                                                       
     CO2                                                                                                               23560.55                                                              26648.67
     SO2                                                                                                                   7.62                                                                      8.62
     CH4                                                                                                                   0.97                                                                      1.10
     Benzene                                                                                                            0.05                                                                      0.06
     Cd                                                                                                                 7.55E-05                                                              8.54E-05
     Cr                                                                                                                    0.0003                                                                  0.0004
     Cu                                                                                                                     0.01                                                                      0.01
     N2O                                                                                                                   0.90                                                                      1.02
     Ni                                                                                                                    0.0005                                                                  0.0005
     Zn                                                                                                                     0.007                                                                    0.008
     Benzo (a) pyrene                                                                                            0.0002                                                                  0.0002
     NH3                                                                                                                   0.15                                                                      0.17
     Se                                                                                                                  7.55E-05                                                              8.54E-05
     PAH (polycyclic hydrocarbons)                                                                      0.02                                                                      0.02
     Hydrocarbons (HC, as NMVOC)                                                                   21.50                                                                    24.32
     NOx                                                                                                                335.22                                                                  379.16
     CO                                                                                                                   47.43                                                                    53.65
     Particulates (b2.5 µm)                                                                                     33.83                                                                    38.27
Emission by human labor to air (kg)                                                                                                                                                     
     CO2                                                                                                                 149.39                                                                  211.93

Figure 4. ReCiPe2016 method addresses various mid-points.
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specific criteria and the ReCiPe2016 methodology, which may not
encompass the complete range of environmental impacts. Factors
like animal welfare, land use, and greenhouse gas emissions
should also be taken into account when assessing the overall sus-
tainability of meat and egg production (Guinée et al., 2010).
Furthermore, the interpretation of these results should consider a
broader sustainability context, including social and economic
aspects. Additional research and analysis may be required to com-
prehensively grasp the environmental impacts of meat and egg
production (Alves et al., 2023).

The evaluation of environmental emissions from different
sources at three key stages, as illustrated in Figure 5, has revealed
significant effects arising from the use of machinery and diesel fuel
in ostrich breeding environments. The study specifically indicates
that the use of machinery is responsible for a 60% impact on both
ecosystem health and human well-being, highlighting the necessity
of implementing measures to control and diminish the environ-
mental effects of machinery in ostrich breeding operations.
Additionally, the research underscores that the consumption of
diesel fuel leads to a 30% impact on resource utilization, empha-
sizing the notable consequences of using diesel fuel on resource
consumption and sustainability within this context. These findings
emphasize the importance of evaluating and dealing with the envi-
ronmental consequences of inputs such as machinery and fuel in
ostrich breeding, suggesting that targeted efforts to reduce these
impacts could be vital for improving the overall environmental
sustainability of ostrich farming practices. 

Results of modeling techniques
Using ANN to predict energy output and environmental emis-
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Table 5. Assessment values for damage per ton in ostrich breeding units vary across different production methods.

Items                                             Unit                                         Ostrich (meet)                                  Ostrich (egg)

Human health                                       DALY                                                        2.15                                                          2.38
Ecosystems                                        species.yr                                                    0.003                                                        0.004
Resources                                          USD2013                                                  9215.47                                                   10227.76
DALY, disability adjusted life years - a damage of 1 is equal to: loss of 1 life year of 1 individual, or 1 person suffers 4 years from a disability with a weight of 0.25; species.yr: the unit for
ecosystems is the local species loss integrated over time.

Table 6. The results of different arrangement of models in ostrich breeding units under different production.

Type of crops                        Items of ANN        Statistics indices                   Independent variables
(best topology)                       model                                                         Output energy       Human health         Ecosystems     Resources

Ostrich (meet) (7-4-6-4)                Overall                         R2                                            0.937                           0.981                          0.974                 0.915
                                                                                            RMSE                                      0.214                           0.102                          0.109                 0.147
                                                                                            MAPE (%)                               0.049                           0.062                          0.008                 0.319
                                                       Train                            R2                                            0.935                           0.984                          0.912                 0.956
                                                                                            RMSE                                      0.419                           0.325                          0.348                 0.259
                                                                                            MAPE (%)                               0.082                           0.098                          0.116                  0.113
                                                       Test                              R2                                            0.884                           0.946                          0.889                 0.916
                                                                                            RMSE                                      0.364                           0.084                          0.036                 0.168
                                                                                            MAPE (%)                               0.009                           0.364                          0.321                 0.458
Ostrich (egg) (7-6-5-4)                  Overall                         R2                                            0.914                           0.958                          0.945                 0.962
                                                                                            RMSE                                      0.236                           0.315                          0.381                 0.256
                                                                                            MAPE (%)                               0.056                           0.136                          0.096                 0.039
                                                       Train                            R2                                            0.945                           0.916                          0.889                 0.906
                                                                                            RMSE                                      0.212                           0.430                          0.162                 0.542
                                                                                            MAPE (%)                               0.036                           0.056                          0.047                 0.126
                                                       Test                              R2                                            0.887                           0.923                          0.965                 0.886
                                                                                            RMSE                                      0.236                           0.136                          0.148                 0.198
                                                                                            MAPE (%)                               0.036                           0.087                          0.149                 0.176

Figure 5. The impact of various input factors on the damages incurred
in ostrich breeding units across different production methods. 
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sions in meat and egg production offers valuable insights for
enhancing sustainability in agriculture. By identifying the most
effective networks and understanding their strengths and weak-
nesses, targeted strategies can be developed to minimize environ-
mental impact and enhance energy efficiency in meat and egg pro-
duction. The findings from the artificial neural network analysis
(Table 6) indicate that the well-trained network for meat produc-
tion under experimental conditions exhibits a high determination
coefficient, highlighting its accuracy in estimating energy output
and environmental emissions. This implies that implementing
measures to reduce machinery, diesel fuel, and energy consump-
tion can enhance performance in meat production. Specific neu-
rons dedicated to eggs and meat are discernible. The best-trained
network in the experimental mode for four aspects of meat produc-
tion shows a determination coefficient exceeding 0.915. The deter-
mination coefficient for estimating energy output in meat produc-

tion in the test mode is 0.884. The determination coefficients for
energy output (0.914), human health (0.958), ecosystem (0.945),
and resources (0.962) for eggs collectively indicate that only the
resource factor presents more favorable results than meat.
Furthermore, the analysis demonstrates that the determination
coefficient for the factors influencing eggs in the overall context is
particularly favorable for the resource factor, indicating the poten-
tial for greater resource efficiency in egg production compared to
meat production. Therefore, prioritizing resource efficiency mea-
sures in egg production could result in positive environmental and
energy outcomes.

Based on the information presented in Tables 7 and 8, it is clear
that utilizing a combination of Gbell functions and linear member-
ship for input and output values in ANFIS 4 yielded superior out-
comes when compared to other combinations. The coefficient of
determination for all four factors in ANFIS 4 demonstrated a more
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Table 7. The characteristics of the best structure of first ANFIS architecture for prediction of output energy and damage assessment of
ostrich (meat) production by applying three-level ANFIS.

Types of crops        ANFIS model Type of MF        Number of MF         Learning method          R2           RMSE   MAPE (%)
                                                                  Input     Output    Input      Epoch                                                                                           

Output energy              ANFIS (1)                     Gbell         Linear          5,6              32                           Hybrid                     0.380            0.689             0.118
                                     ANFIS (2)                     Gbell         Linear          5,6              32                           Hybrid                     0.587            0.348             0.147
                                     ANFIS (3)                     Gbell         Linear          5,6              32                           Hybrid                     0.880            0.365             0.103
                                     ANFIS (4)                     Gbell         Linear          5,6              32                           Hybrid                     0.978            0.256             0.087
Human health              ANFIS (1)                     Gbell         Linear          5,6              32                           Hybrid                     0.458            0.546             0.098
                                     ANFIS (2)                     Gbell         Linear          5,6              32                           Hybrid                     0.884            0.245             0.036
                                     ANFIS (3)                     Gbell         Linear          5,6              32                           Hybrid                     0.948            0.265             0.084
                                     ANFIS (4)                     Gbell         Linear          5,6              32                           Hybrid                     0.993            0.231             0.039
Ecosystems                  ANFIS (1)                     Gbell         Linear          5,6              32                           Hybrid                     0.452            0.641             0.039
                                     ANFIS (2)                     Gbell         Linear          5,6              32                           Hybrid                     0.548            0.425             0.115
                                     ANFIS (3)                     Gbell         Linear          5,6              32                           Hybrid                     0.890            0.325             0.096
                                     ANFIS (4)                     Gbell         Linear          5,6              32                           Hybrid                     0.989            0.115             0.034
Resources                     ANFIS (1)                     Gbell         Linear          5,6              32                           Hybrid                     0.569            0.253             0.114
                                     ANFIS (2)                     Gbell         Linear          5,6              32                           Hybrid                     0.745            0.326             0.089
                                     ANFIS (3)                     Gbell         Linear          5,6              32                           Hybrid                     0.912            0.116             0.035
                                     ANFIS (4)                     Gbell         Linear          5,6              32                           Hybrid                     0.984            0.110             0.108

Table 8. The characteristics of the best structure of first ANFIS architecture for prediction of output energy and damage assessment of
ostrich (egg) production by applying three-level ANFIS.

Types of crops        ANFIS model Type of MF        Number of MF      Learning method        R2          RMSE      MAPE (%)
                                                           Input       Output       Input         Epoch                                                                                         

Output energy               ANFIS (1)             Gbell          Linear             5.6                 32                        Hybrid                   0.412            0.426                0.118
                                      ANFIS (2)             Gbell          Linear             5.6                 32                        Hybrid                   0.563            0.498                0.147
                                      ANFIS (3)             Gbell          Linear             5.6                 32                        Hybrid                   0.840            0.426                0.103
                                      ANFIS (4)             Gbell          Linear             5.6                 32                        Hybrid                   0.962            0.236                0.087
Human health               ANFIS (1)             Gbell          Linear             5.6                 32                        Hybrid                   0.458            0.412                0.098
                                      ANFIS (2)             Gbell          Linear             5.6                 32                        Hybrid                   0.562            0.362                0.036
                                      ANFIS (3)             Gbell          Linear             5.6                 32                        Hybrid                   0.694            0.212                0.084
                                      ANFIS (4)             Gbell          Linear             5.6                 32                        Hybrid                   0.984            0.131                0.039
Ecosystems                   ANFIS (1)             Gbell          Linear             5.6                 32                        Hybrid                   0.440            0.356                0.039
                                      ANFIS (2)             Gbell          Linear             5.6                 32                        Hybrid                   0.660            0.216                0.115
                                      ANFIS (3)             Gbell          Linear             5.6                 32                        Hybrid                   0.846            0.112                0.096
                                      ANFIS (4)             Gbell          Linear             5.6                 32                        Hybrid                   0.974            0.078                0.034
Resources                      ANFIS (1)             Gbell          Linear             5.6                 32                        Hybrid                   0.550            0.256                0.114
                                      ANFIS (2)             Gbell          Linear             5.6                 32                        Hybrid                   0.631            0.116                0.089
                                      ANFIS (3)             Gbell          Linear             5.6                 32                        Hybrid                   0.900            0.102                0.035
                                      ANFIS (4)             Gbell          Linear             5.6                 32                        Hybrid                   0.980            0.990                0.108

Non
-co

mmerc
ial

 us
e o

nly



optimal value, particularly showing values closer to one for meat
factors than for eggs. Furthermore, the mean squared error value
was below 1, signifying a high level of accuracy in the output
results. A coefficient of determination approaching 1 indicates that
the ANFIS model effectively captures the data and makes precise
predictions. Through optimizing the coefficient of determination,
the ANFIS model can offer the best possible fit to the data, result-
ing in improved performance. The average root percentage of the
mean squared error further supported the accuracy of the results.
Considering the importance of predicting environmental green-
house gas emissions to address temperature rise, global warming,
and potential health consequences, this ANFIS model holds value
for managers and planners in their decision-making and strategic
processes. Figure 6 illustrates a comparison of two prominent
models within meat and egg production, indicating that ANFIS
outperforms due to its utilization of evolutionary algorithms and
natural selections in both production processes. These algorithms,
inspired by biological principles, operate simultaneously and in
parallel fashion. In addition, ANFIS uses historical information
and past experiences to achieve better results. In contrast, the arti-
ficial neural network usually learns from limited input data and
may sometimes get trapped and lead to unstable results
(Abdollahizad et al., 2021). In presenting the results, the discus-
sion could deepen the implications of these results for industry
practices and policy recommendations about energy results.

The comparison of energy analysis results between egg and
ostrich meat production provides insights into energy consumption
and production. The energy inputs per 1000 pieces for the respec-
tive product production. Meat production uses 1086825.54 MJ per
1000 pieces, while egg production uses 1197794.25 MJ per 1000
pieces. In contrast, meat production yields 536182.33 MJ per 1000
pieces, while egg production yields 768610.90 MJ per 1000 pieces.
Despite egg production requiring more energy than meat produc-
tion, it also yields more energy for consumers. The energy con-
sumption of each input for every 1000 pieces was calculated by
multiplying it by its energy coefficient.

When considering protein supply per total energy consump-
tion, egg production is justified compared to meat. The breakdown
of inputs for meat and egg production shows that natural gas con-
sumption accounts for over 33.40% in meat production and
34.03% in egg production, making it the most significant contrib-
utor. Diesel fuel follows as the second most significant energy con-
sumer. These findings emphasize the importance of fuel and ener-
gy supply in ostrich breeding environments, especially for egg pro-
duction. However, feed (22.57%) and electricity (5.23%) con-
sumption for egg production are lower than that for meat produc-
tion. As a result, feed supply does not play a crucial role and does
not significantly impact producers’ decisions.

The energy contribution of specific feeds indicates that provid-
ing certain ingredients like rice bran, sugar beet pulp, vitamins and
minerals, and fatty acids for meat production significantly con-
tributes to total energy consumption. These ingredients are report-
ed to be less in quantity for egg production compared to meat. The
variation in ingredient amounts between eggs and meat production
can be attributed to the differing nutritional and energy require-
ments of egg-laying ostriches versus meat-producing ostriches.

The information provided discusses the use of ANN and
ANFIS to predict energy output and environmental emissions in
meat and egg production. The results indicate that ANFIS models,
particularly ANFIS 4, show superior outcomes compared to other
models in predicting factors related to meat production. ANFIS 4
demonstrated higher coefficient of determination values and lower
mean squared error values, suggesting greater accuracy in output

results, especially for meat factors. The ANFIS model is highlight-
ed for its use of evolutionary algorithms and natural selection,
which lead to more accurate predictions and better performance
compared to traditional ANN models that may have limitations in
handling complex data.The discussion emphasizes the significance
of these modeling techniques for enhancing sustainability in agri-
culture by minimizing environmental impact and improving ener-
gy efficiency in meat and egg production. By identifying effective
networks and optimizing coefficient of determination values, tar-
geted strategies can be developed to enhance resource efficiency
and reduce environmental footprint in agricultural practices. The
findings suggest that prioritizing resource efficiency measures in
egg production could lead to positive environmental and energy
outcomes. Additionally, the ANFIS model holds value for man-
agers and planners in decision-making processes regarding envi-
ronmental greenhouse gas emissions and addressing broader issues
like global warming and health consequences.

There are several strategies that can be implemented to
improve energy efficiency and reduce environmental impact.
Some potential detailed strategies include:

Energy audits. Conducting regular energy audits to identify
areas where energy is being wasted and implementing measures to
reduce energy consumption. This may include upgrading to ener-
gy-efficient appliances and equipment, optimizing heating and
cooling systems, and improving insulation.

Renewable energy sources. Investing in renewable energy
sources such as solar, wind, or geothermal power to reduce
reliance on fossil fuels and decrease carbon emissions. Installing
solar panels, wind turbines, or geothermal heating and cooling sys-
tems can help lower energy costs and lessen environmental impact.
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Figure 6. Comparison of two prominent models within meat and egg
production.
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Energy-efficient lighting. Switching to energy-efficient light-
ing options such as LED bulbs can significantly reduce electricity
usage. LED bulbs consume less energy and have a longer lifespan
compared to traditional incandescent or fluorescent bulbs.

Smart technology. Implementing smart technology solutions
like programmable thermostats, smart lighting systems, and energy
monitoring devices can help optimize energy use and identify
opportunities for energy savings. These technologies allow for bet-
ter control and management of energy consumption in homes and
buildings.

Energy-efficient building design. Incorporating energy-effi-
cient design principles in new construction or renovations can
improve energy performance and reduce environmental impact.
This may include using sustainable building materials, optimizing
natural lighting and ventilation, and incorporating energy-efficient
appliances and systems.

Behavior change initiatives. Educating and incentivizing indi-
viduals to adopt energy-saving behaviors such as turning off lights
when not in use, unplugging electronics, and using energy-efficient
appliances can make a significant impact on reducing energy con-
sumption and lowering environmental impact.

Transportation alternatives. Encouraging the use of public
transportation, carpooling, cycling, or electric vehicles can help
reduce greenhouse gas emissions associated with transportation.
Providing infrastructure and incentives for sustainable transporta-
tion options can contribute to lowering overall energy consump-
tion and environmental impact.

Waste reduction and recycling. Implementing waste reduction
strategies, recycling programs, and composting initiatives can help
minimize energy used in the manufacturing and disposal of prod-
ucts. By reducing waste and recycling materials, less energy is
required for producing new products, leading to a lower environ-
mental footprint.

By combining these detailed strategies and customized solu-
tions tailored to specific contexts and needs, significant improve-
ments in energy efficiency and reductions in environmental impact
can be achieved.

Conclusions
Meat and eggs are the main contributors to natural gas con-

sumption, accounting for approximately 33.40% and 34.03%,
respectively. In ostrich breeding environments, diesel fuel con-
sumption follows closely behind in terms of energy usage.
Efficient fuel and energy management are crucial in these settings,
particularly for optimizing egg production. Decision-makers in the
ostrich industry can leverage these findings to streamline energy
usage, reducing production costs for meat and eggs. While egg
production may have a slightly higher negative impact on human
health compared to meat production, the latter demonstrates more
favorable outcomes in terms of its effects on ecosystems and
resource consumption. According to the ReCiPe2016 method,
meat production has an eco-friendlier footprint than egg produc-
tion. These findings serve as a guide for policymakers and environ-
mental planners to promote both human health and environmental
sustainability. The utilization of ANN to predict energy output and
environmental emissions in meat and egg production opens
avenues for enhancing agricultural sustainability. Identifying
effective neural networks and understanding their capabilities can
facilitate the development of targeted strategies to minimize envi-
ronmental impact and boost energy efficiency in meat and egg pro-

duction. The high coefficient of determination associated with the
ANFIS model underscores its accuracy in predicting data, offering
valuable insights for managing greenhouse gas emissions and
addressing climate change challenges. This model stands as a prac-
tical tool for decision-makers and planners striving to reduce envi-
ronmental impact and protect human health.
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