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Abstract 

In agriculture, it is crucial to identify and control weeds as these plant species pose a significant 

threat to the growth and development of crops by competing for vital resources such as nutrients, 

water, and light. A promising solution to this problem is adopting smart weed control systems 

(SWCS) that significantly reduce the use of harmful chemical products. Furthermore, SWCS leads 

to reduced production costs and a more sustainable and eco-friendly approach to farming. However, 

implementing SWCS in natural fields can be challenging, mainly due to difficulties in accurately 

localizing plants. To address this issue, a visual identification system can be employed to label 

plants from images using a process known as semantic segmentation. In this work, we have 

implemented, validated, and compared three deep learning approaches, including Mask Region-

based Convolutional Neural Network (Mask R-CNN), Mask R-CNN enhanced with an Atrous 

Spatial Pyramid Pooling module (Mask R-CNN-ASPP), and a proposed model named Residual U-

Net architecture, for the semantic pixel segmentation of high densities of both crops (Zea mays) and 

weeds (including narrow-leaf weeds and broad-leaf weeds). Data augmentation and transfer 

mailto:luismvc@cio.mx


  

learning have also been implemented. The performance of the models was evaluated with the well-

known metrics Precision, Recall, Dice similarity coefficient (DSC), and mean Intersection-Over-

Union (mIoU). As a result of the analysis, the DSC and mIoU of Mask R-CNN-ASPP based models 

were up to 10.63% and 10.54% superior to that of the Mask R-CNN based models. Nonetheless, 

the proposed Residual U-Net architecture outperformed Mask R-CNN-ASPP based networks in all 

the metrics, reaching a DSC of 92.98% and mIoU of 87.12%. Thus, we have concluded that the 

proposed Residual U-Net-like architecture is the best alternative for the semantic segmentation task 

in images with high plant density. Our research addresses the challenge of weed identification and 

control in agriculture, helping farmers produce crops more efficiently while minimizing 

environmental impact. 

 

Keywords: Deep-learning, semantic segmentation, corn and weeds identification, natural crop field 

conditions. 

 

Introduction 

Weed control is an indispensable practice in agriculture. One main reason for implementing this 

control is that weeds can compete with crops for essential resources like nutrients, sunlight, and 

water, which can significantly reduce crop yield (Picon et al., 2022). Moreover, weeds can act as 

carriers of pathogens, thereby augmenting the risk of disease infection to crop plants (Dentika et 

al., 2021). For instance, in the case of the corn crop with high densities of weeds left uncontrolled 

during the production cycle, its yield is reduced by up to 90% (Nedeljković et al., 2021). Thus, the 

identification and location of weeds in the crop field have emerged as a crucial research topic, 

enabling the implementation of a well-regarded approach to weed management, namely Site-

Specific Weed Management (SSWM) (Montes de Oca et al., 2018; Montes de Oca and Flores, 

2021a). 

SSWM techniques involve the accurate detection and localization of weeds in the field to facilitate 

targeted control measures, such as the precise application of thermal beams or herbicide flow 

directly to weed-infested areas (Garibaldi-Márquez et al., 2022). This advanced technology has 

demonstrated remarkable results, leading to reductions of up to 82% in herbicide volume (Nikolić 

et al., 2021), decreased production costs (Monteiro and Santos, 2022), as well as a significant 

reduction in environmental pollution and herbicide residues in food (Montes de Oca and Flores, 

2021b; Tang et al., 2016). Nevertheless, the first challenge for implementing an efficient SSWM 

technology is the discrimination of crops and weeds under natural conditions. Then, a computer 

vision system may perform weed and crop discrimination. An approach based on the pixel-wise 

semantic segmentation technique can be implemented in this context. Semantic segmentation aims 

to categorize each pixel in the image into a class, producing a segmentation map of the plant within 



  

the input image. 

Traditional semantic segmentation algorithms, including normalized N-Cut (Shi and Malik, 2000), 

super-pixel (Ren and Malik, 2003), and k-means clustering (Arai and Barakbah, 2007), have been 

widely used in various classification tasks. However, when it comes to agricultural applications, 

these classical algorithms have exhibited certain limitations due to factors such as similarities in 

plant color, the complex shapes of leaves, and high plant densities (Zhang and Peng, 2022). To 

address these challenges, researchers in recent years have turned to more advanced segmentation 

techniques. Such techniques are commonly based on the use of deep learning (DL) architectures. 

These DL-based approaches have been overwhelmingly successful in several computer vision tasks 

including natural language processing, object recognition, and object segmentation, to name a few. 

Among the DL-based approaches, Convolutional Neural Networks (CNNs), which are the most 

popular deep learning architecture, have been utilized for plant classification (Garibaldi-Márquez 

et al., 2022), disease detection (Jadhav et al., 2021), nutrient deficiencies studies (Taha et al., 2022), 

etc. The popularity of CNNs is because they can extract and learn multi-features from a set of input 

images (Picon et al., 2022). Thus, special attention was paid to CNN models for semantic 

segmentation. For instance, in the work presented by Long et al. (2015), a Fully Convolutional 

Network (FCN) for segmentation has been proposed. In this work, the authors have shown that the 

multi-resolution layer combinations significantly improve the segmentation of objects present in 

the image while simultaneously simplifying and speeding up learning and inference. On the other 

hand, in the work reported by Ma et al. (2019), the authors segmented rice seedlings, weeds, and 

backgrounds utilizing the SegNet-FCN architecture, which was compared with the traditional FCN 

and U-Net networks. Similarly, in the work of Kolhar and Jayant (2021), the authors evaluated the 

residual U-Net, classic SegNet, and classic U-Net for segmentation of individual Arabidopsis and 

Tabacco plants, reaching a dice coefficient (DSC) of 97.09% from the residual U-Net. Regarding 

works carried out in corn crops, Dyrmann et al. (2016) classified soil, weeds, and corn plants based 

on FCN from RGB images, reporting an accuracy of over 94%. Recently, Picon et al. (2022) 

presented a modified PSPNet for segmenting corn plants, three narrow-leaf weed species, and three 

broad-leaf weed species. They reached a DSC of 25.32% when the plants were grouped into crop, 

narrow-leaf weeds, and broad-leaf weeds classes. 

Even though numerous studies have explored the semantic segmentation of various crops, there 

needs to be more focus on segmenting one of the most crucial cereals, namely corn. Then, there is 

a clear need to propose and evaluate deep learning architectures specifically tailored for 

categorizing corn plants and distinguishing them from common weeds. Furthermore, to the best of 

our knowledge, the segmentation of corn plants in natural field conditions has received even less 

attention, an aspect of significant importance for understanding and accurately delineating corn 

plants within real-world agricultural environments, which is an essential requirement for developing 



  

site-specific weed and corn control systems. 

In this work, a modified residual U-Net network specifically designed to achieve semantic 

segmentation of weeds and corn plants has been proposed. The performance of this proposed 

network has been compared with a Mask Region-based Convolutional Neural Network (Mask R-

CNN) and a proposed improved version of the Mask R-CNN. The proposed Mask R-CNN (Mask 

R-CNN-ASPP) differs from the classic model by incorporating the Atrous Spatial Pyramid Pooling 

module. 

The remainder of this work is organized as follows. Section 2 describes the problem statement and 

the experimental setup. Experiments conducted, under real conditions, that corroborate the main 

result and discussion of the findings are presented in Section 3 and Section 4 respectively. Finally, 

in Section 5 the conclusions of the work are presented. 

 

Materials and Methods 

Semantic segmentation is a computer vision technique that involves classifying each pixel in an 

image into a specific class or category, thereby dividing the image into meaningful segments. Unlike 

simpler forms of image segmentation, such as object detection, which identifies and locates objects 

in an image, semantic segmentation goes a step further by assigning a distinct label to every pixel, 

providing a detailed understanding of the image’s content. This method is particularly valuable in 

various applications, including agriculture, where it plays a pivotal role in precision farming. 

Semantic segmentation helps identify and classify different elements within an agricultural scene, 

such as crops, soil, and weeds, enabling farmers to gain granular insights into their fields. Farmers 

often face challenges in accurately assessing crop health, identifying weeds, and optimizing 

resource allocation. Semantic segmentation can address these issues by enabling automated and 

precise delineation of crop boundaries, detection of plant diseases, and differentiation between crops 

and unwanted vegetation. In this context, the addressed problem can be summarized as follows:  

 

Problem 1 Given a ground-level set of images, denoted as 𝑋 = 	 {𝑥! 	 ∈ 	 𝐼"×$×%|0 ≤ 𝑖 ≤ 𝑁}, where 

𝐼"×$×% refers to the set of 𝑚 × 𝑛 color images, acquired from a natural cornfield, the problem 

is to create a pixel-wise segmentation map where each pixel 1[𝑥!]&,( , 𝑟 = 1,… ,𝑚; 𝑐 = 1,… , 𝑛: is 

assigned to the class Corn plants (Crop), Narrow-leaf weeds (NLW), Broad-leaf weeds (BLW), or 

Soil, despite the presence of rocks, stubble, plant density, occlusions, shadows, and sunlight 

intensity. Thus, the proposed methodology aims to label each pixel of the input image by means of 

a deep-learning-based model (ℳ) with a specific class (Crop, NLW, BLW, Soil), i.e., ℳ: [𝑥]&,( ↦

𝑦, where 𝑦	 ∈ {𝐶𝑟𝑜𝑝,𝑁𝐿𝑊,𝐵𝐿𝑊, 𝑆𝑜𝑖𝑙}. 

 

To address Problem 1, we propose the overall process summarized in Figure 1, where an input 



  

image, which presents a high plant density, is pixel-wise segmented utilizing a deep-learning-based 

model (residual U-Net, Mask R-CNN, or Mask R-CNN-ASPP). 

 

Dataset description and image pre-processing 

We have collected extensive crop/weed images in natural corn fields to train and test the proposed 

system. All these images were pixel-level annotated. Most images were captured in a top-down 

view, and only a few were captured from side views. The image capture distance, h, between the 

plants and the camera was 0.4m to 1.5m, i.e., h ∈ [0.4m, 1.5m]. Most of the acquired images include 

different plant species (weeds) and several instances of the crop. The dataset for this study has been 

integrated by 10,200 images of sizes 4,608 × 3,456, 1,600 × 720, and 2,460 × 1,080 pixels. Our 

image dataset variability includes side views of plants and views of plants with zoom variation. 

Furthermore, several images were acquired with different light conditions, because these images 

were captured on sunny and cloudy days, in the morning, at noon, and in the afternoon. 

Additionally, our image dataset does not have a uniform background since elements like the soil 

appearance and straws from past crops were introduced. It is worth mentioning that the images were 

captured every five days. Figure 2 shows representative instances of the dataset. In the first row 

(Figure 2a), single-plant images are shown; in the second row (Figure 2b), multiple-plant images 

are provided, where leaves overlap, occlusion and soil appearance variability are observed. Finally, 

in the last row (Figure 2c), multiple small plants are depicted as a product of the maximum capture 

distance (h = 1.5m). 

After carefully observing the acquired images, nine different plant species were found. These plants 

were grouped into three classes: i) Crop, ii) NLW, and iii) BLW. A manual labeling step using the 

tool VGG Image Annotator (Dutta and Zisserman, 2019) was conducted after grouping the plants 

in each of the 10,200 acquired images. This involved tracing carefully a polygon around the contour 

of most plants in the image, ensuring that soil pixels were consistently excluded. The built dataset 

is defined as 𝐷𝑆	 = {(𝑥), 𝑌!)}!*),...,,, where 𝑥! ∈ 	 𝐼"×$×% represents the i-th image and 𝑌! =

R𝑦-S-*),...,., in which 𝑦- ∈ {𝐶𝑟𝑜𝑝, 𝑁𝐿𝑊,𝐵𝐿𝑊, 𝑆𝑜𝑖𝑙}, is the set of all labeled plants and soil in the i-

th image. It is worth mentioning that, in general, |𝑌!| ≠ |𝑌/|∀	𝑖 ≠ 𝑘 (|∙|		refers to the cardinality of 

the set). Table 1 shows a summary of the plant species that belong to each class, the labels traced 

per plant species (LBLS), and the total number of labels for each class (LBLC). It is worth noticing 

that the class Soil is not reported in this table because it was indirectly annotated. 

The proposed methodology aims to predict the elements “Y*” presented in an input image “x” with 

a previously trained deep learning model. 

 

Deep neural network architectures 

The integration of deep neural networks and semantic segmentation has become a powerful 



  

technological advancement in the field of agriculture with diverse applications. Specifically, 

Convolutional Neural Networks (CNNs), a type of deep neural network, have proven to be adept at 

handling large amounts of agricultural data, enabling precise image analysis for various tasks 

(Dyrmann et al., 2016; Ma et al., 2019; Kolhar and Jayant, 2021). Through applying deep neural 

networks, semantic segmentation facilitates the accurate delineation of specific objects within 

agricultural images, such as crops, weeds, and soil. 

 

Residual U-Net architecture 

The proposed residual U-Net architecture consists of two key components: an encoder, also referred 

to as the backbone or contracting path, and a decoder or expansive path. The encoder performs 

convolutional operations to extract essential features. On the other hand, the decoder employs 

transposed 2D convolutional layers to upscale the feature blocks until they match the size of the 

original input image. In the proposed architecture, we utilize the ResNet50 and ResNet101 

architectures (He et al., 2016) to serve as the encoder part of our model. Figure 3 visually represents 

the proposed residual U-Net architecture. 

From the input image, the encoder operations commence with a 7 × 7 padded convolution, followed 

by normalization and a Rectified Linear Unit (ReLU) activation function. These sequential 

operations yield an initial feature map with dimensions 256 × 256 × 64. Subsequently, this feature 

map becomes the input for the “ResNet, B1” block, the output of which is then passed to the next 

“ResNet, B2” block. This process continues until the final output is obtained from the “ResNet, B4” 

block. Each ResNet block contributes to downsampling the feature maps, resulting in halved size 

and twice the number of channels compared to the previous stage, as depicted in Figure 3. 

In the decoder section of our proposed network, we employ 3 × 3 transposed convolutions to 

facilitate the up-sampling of the feature maps at each step. This operation effectively doubles the 

size of the feature maps while reducing the number of channels by half. Consequently, the up-

sampled feature maps are concatenated with the corresponding feature map obtained from the 

ResNet block at the same level in the encoder. Following the concatenation, two 3 × 3 padded 

convolutions and the ReLU activation function are applied. Lastly, at the final layer of the decoder, 

a 1 × 1 convolution is utilized to map each 64-dimensional feature vector to a four-channel output. 

This number of output channels aligns with the classes present in our dataset. 
 

ResNet backbone details 

The backbone of the residual U-Net architecture is constructed using ResNet50 and ResNet101 

models. The selection of ResNet models was motivated by their demonstrated effectiveness in 

classifying plants in natural environments, as indicated by previous studies (Quan et al., 2021; Peng 

et al., 2022; Picon et al., 2022; Zenkl et al., 2022). The integration of ResNet50 and ResNet101 



  

involves several components. 

Figure 4a provides an overview of the entire ResNet blocks, including the arrangement of the 

residual blocks. As it can be appreciated, this structure begins with a 7 × 7 padded convolution 

layer with a stride of 2, followed by a 3 × 3 max pooling layer with the same stride. The subsequent 

structure comprises four consecutive main blocks, each consisting of residual blocks with unique 

properties. These main blocks are connected to a fully connected layer, which is then linked to the 

output layer responsible for generating the final predictions. 

The presence of residual building blocks characterizes the ResNet module. Here, two types of 

residual blocks are utilized: the identity block (shown in Figure 4b) and the convolutional block 

(depicted in Figure 4c). The identity block is employed when the input feature map (𝔪) and the 

output feature map of the block (𝜑(𝔪)) have the same dimensions. 

As illustrated in Figure 4b, the identity block consists of three stacked convolutions 

(1 × 1, 3 × 3, 𝑎𝑛𝑑	1 × 1), each followed by a normalization operation and a ReLU activation 

function. The resulting output is then element-wise added to the feature map (𝔪) and fed into the 

residual block via a shortcut path. This addition yields the output ℋ(𝔪), which represents the 

underlying mapping. Notably, the number of kernels used in the identity block, denoted as “C1” and 

“C2”, varies depending on the specific main block (Block 1, Block 2, Block 3, or Block 4) within 

the ResNet architecture. For instance, in the first main block (Block 1), C1 = 64 and C2 = 256, 

while in the second main block (Block 2), C1 = 128 and C2 = 512, and so on. This variation allows 

the network to capture different levels of complexity and abstraction. 

Compared to conventional CNNs that stack convolutional layers to approximate the input, the 

advantage of using residual blocks is that the network learns the residual map, expressed as 𝜑(𝔪) =

ℋ(𝔪) − 𝔪. This formulation helps to mitigate the vanishing gradient problem because if 𝜑(𝔪) 

tends to zero during back-propagation, the identity map m contributes to non-zero weights. 

Consequently, gradients can propagate to the initial layers of the network, allowing them to learn at 

a comparable rate to the final layers. This characteristic of residual blocks enables the training of 

deeper networks. 

In scenarios where the input and output have different dimensions, the convolutional block is 

utilized. Unlike the identity block, the convolutional block incorporates a 1 × 1 convolutional layer 

in the shortcut path, in addition to the variation in the number of kernels. Specifically, for the 

convolutional block, the values of (C1, C2) are chosen from the set {(128, 512), (256, 1024), (512, 

2048)}. It is important to note that the convolutional block is not present in the first main block 

(Block 1). Including the 1 × 1 convolutional layer in the shortcut path allows for adapting the 

dimensions of the feature maps to match the desired output size. This additional convolutional layer 

helps incorporate richer spatial information and adapt the network’s capability to accommodate 

changes in spatial resolution throughout the network. However, in the first main block (Block 1), 



  

where the initial feature maps are obtained, the convolutional block is not required since the 

dimensions of the input and output feature maps are already compatible. 

A notable distinction between ResNet50 and ResNet101 lies in the number of residual blocks within 

the main Block 3. Specifically, ResNet50 incorporates five residual blocks, while ResNet101 

includes twenty-two residual blocks.  Consequently, considering the shared 7 × 7 convolutional 

and 3 × 3 max pooling layers in both networks, the total number of layers in ResNet50 amounts to 

50, whereas ResNet101 comprises 101 layers. The discrepancy in the number of residual blocks 

between the two architectures significantly impacts their depth and ability to capture intricate 

patterns and features within the input data. With a larger number of layers and residual blocks, 

ResNet101 possesses a more extensive and expressive network structure, facilitating the 

representation of increasingly complex relationships and enhancing its ability to learn hierarchical 

features. However, it is worth noting that the deeper architecture of ResNet101 may also introduce 

challenges, such as increased computational requirements and the potential risk of overfitting, 

especially in scenarios with limited training data. Consequently, the choice between ResNet50 and 

ResNet101 depends on the specific requirements of the task at hand, striking a balance between 

model complexity and computational efficiency. 

 

Mask R-CNN architecture 

Mask Region-based Convolutional Neural Network (Mask R-CNN) is a deep-learning architecture 

used for performing instance segmentation. This network can detect objects and “accurately” 

perform pixel-level instance segmentation on them. The illustration of Mask R-CNN is depicted in 

Figure 5. 

The backbone of this network plays a critical role as it takes the input image and generates a feature 

map. Subsequently, a Region Proposal Network (RPN) analyzes this feature map to generate 

rectangular region proposals. However, it should be noted that these proposed regions derived from 

the feature map may be misaligned with respect to the input image. Thus, an ROI alignment process 

is employed to align these ROIs based on the input image. These components can be collectively 

summarized as the mapping function (𝑓0) that transforms the input image into a fixed-size feature 

map. The head of the Mask R-CNN architecture comprises two parallel branches. The first branch 

is a fully connected layer, denoted as 𝑓∅, responsible for predicting and classifying bounding boxes 

for each ROI. The second branch is an FCN, denoted as 𝑓2, which predicts a binary mask for each 

class independently of the classification branch. The FCN consists of four consecutive 3 × 3 conv 

layers, followed by a 2 × 2 deconv layer with a stride of 2, and finally, a 1 × 1 conv layer. These 

hidden layers utilize the ReLU activation function. This configuration allows the segmenting of the 

objects in the image. To summarize the overall process, from each input image 𝑥!, a feature map 

ℱ = 𝑓0(𝑥!) is computed. This feature map serves as the input for both the fully connected layers 



  

for feature extraction, 𝑓∅(𝑓0(𝑥!)), and the FCN 𝑓2(𝑓0(𝑥!)). 

 

Mask R-CNN–ASPP architecture 

The Mask R-CNN network, which employs convolutions and deconvolution operations in its 

segmentation branch, may have limitations due to the inability of convolutions to capture complete 

spatial context information from feature maps alone. Such information can be valuable for 

enhancing segmentation, particularly in scenarios with a high density of objects, as encountered in 

this study. To address this challenge and enhance the segmentation of corn and weed plants, we 

integrate the Atrous Spatial Pyramid Pooling (ASPP) module within the FCN branch of the Mask 

R-CNN architecture. The ASPP module leverages atrous convolutions (also known as dilated 

convolutions), which perform convolutions by incorporating pixels situated at a certain distance 

from the central pixel rather than using only adjacent pixels. This distance is defined by the 

dilatation rate (𝑟). By employing atrous convolutions, the ASPP module enables the expansion of 

the filter’s field-of-view (Chen et al., 2017). For this comparison, we introduce the ASPP module 

into the Mask R-CNN architecture, as illustrated in Figure 6. 

As depicted in Figure 6, the ASPP module takes as input each fixed-sized feature map (ROI) 

computed by the ROIAlign block. The ASPP block applies three dilated convolutions and a pooling 

operation to each input ROI. The dilated convolutions have dilatation rates of one (𝑟 = 1), three 

(𝑟 = 3), and six (𝑟 = 3)respectively. Following the atrous convolutions, batch normalization and 

ReLU activation functions are applied. Additionally, the input ROI undergoes a 2 × 2 average 

pooling operation, followed by upsampling by a factor of 2 using bilinear interpolation. The outputs 

of these operations are concatenated and then convolved with a 1 × 1 kernel, followed by a ReLU 

activation function. This step results in a 14 × 14 × 256 feature map. Subsequently, the remaining 

operations are consistent with the original FCN implementation of the Mask R-CNN architecture. 

 

 

Metrics 
A comprehensive set of metrics was employed to assess the overall performance of the networks, 

ensuring a thorough evaluation. The metrics utilized in this study included Precision, Recall, Dice 

Similarity Coefficient (DSC), Intersection over Union (IoU), and mean Intersection over Union 

(mIoU). The definitions of these metrics are summarized in Table 2, providing a clear understanding 

of how each metric contributes to the assessment process. 

In addition to these metrics, the number of correct and incorrect predictions was recorded and 

analyzed using the widely recognized representation of the confusion matrix. This matrix offers 

valuable insights into the performance of the models by categorizing predictions into true positives, 

true negatives, false positives, and false negatives. By examining these values, we can understand 



  

the accuracy and efficacy of the models in differentiating between classes. We evaluate the 

networks’ performance using various metrics and incorporating the confusion matrix 

representation. These evaluation measures provide valuable insights into the models’ abilities to 

accurately identify and classify the target objects, facilitating informed decision-making and further 

improvements in object segmentation and classification. 

 

Results 

In this section, the experimental results for the pixel-wise semantic segmentation, as well as the 

overall performance of the proposed residual U-Net model, are presented. In addition, a comparison 

between the residual U-Net model and the two Mask R-CNN-based models is also shown. 

 

Experimental setup 

To evaluate the performance of the deep-learning models, a set of experiments, using our dataset, 

was carried out. Furthermore, to train the networks, the transfer learning method has been 

implemented. Transfer learning refers to a method where a pre-trained model, developed for a 

similar task, is reused as the starting point for a new task, thus allowing rapid and improved 

performance. For this work, the pre-trained models of the ResNet50 and ResNet101 networks in 

the well-known ImageNet dataset (Krizhevsky et al., 2012) were used. It is worth mentioning that 

a desktop computer with an Intel Core i7 processor, NVIDIA GPU GeForce GTX 1080Ti with 6 

GB of VRAM, and 64 GB of RAM memory was used to re-train the models. The implementation 

was carried out in Python 3.8 and Keras framework with Tensorflow 2.4.0 as a backend. 

 

Training of the deep neural networks 

For training the models, we split the dataset into 70% for training, 20% for validation, and 10% for 

testing. It is worth mentioning that these images were randomly selected with uniform probability. 

Moreover, to ensure equal representation of instances per plant class, the dataset was balanced, 

resulting in 22,622 instances per class. Furthermore, a batch size of one and 200 epochs was 

established to train all models. 

 

Residual U-Net training 

For training this model, each input image, 𝑥 ∈ 𝐼$×"×%, was resized to a dimension of 

512 × 512 × 3 1𝒮:	𝐼$×"×% ⟶	𝐼𝒮4)5×4)5×%:. Subsequently, the image was mapped using the 

function ℒ ∶ 	 𝐼𝒮4)5×4)5×% 	⟶ 	 [0,1]4)5×4)5×% ∩	ℝ4)5×4)5×%, normalizing each pixel value to the 

range [0,1] ∩ ℝ. 

In addition, the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.0001 was 

configured. The dice loss function was implemented to calculate the error between the ground truth 



  

image and the predicted mask image. On the other hand, the focal loss function was used to 

compensate for the complicated finding of the NLW class pixels, since it usually occupies a big 

area but a low number of pixels in the image, due to the phenological appearance of the plant 

species. 

The computation of dice loss is as follows, 

𝐿6!(7 = 1 −
2𝑦𝑦∗ + 1
𝑦 + 𝑦∗ + 1																																																											(1) 

where y refers to the ground truth label and y* is the predicted value from the model. 

Respecting the categorical focal loss, it is computed as follows, 

𝐿9:(;< = −𝛼=(1 − 𝑝=)∅ log(𝑝=)																																																		(2) 

where 𝛼= ∈ [0,1] is a vector of class weights which is computed as the inverse class frequency from 

the dataset labels, pt is a matrix of probabilities that each class has to be ground truth, and ϕ is the 

degree of modulating the pixels that are easy to classify (usually ϕ = 2). 

 

Mask R-CNN and Mask R-CNN-ASPP training 

Mask R-CNN and Mask R-CNN-ASPP are specialized in instance segmentation of objects. Each 

segmented object in our models is associated with its corresponding class (Crop, NLW, NLB) to 

ensure a clear image interpretation. In other words, if an image contains “n” objects, each object is 

classified as either crop, narrow-leaf weeds, or broad-leaf weeds. 

These architectures were configured to support input images 𝑥 ∈ 𝐼$×"×% with maximum 

dimensions of 1024 × 1024 × 3. As some images in the dataset contained around 250 labels, the 

Region Proposal Network (RPN) was trained with 500 anchor boxes and Regions of Interest (ROIs) 

per image. During training, the weight decay and the learning rate were 0.0001, with the optimizer 

chosen as SGD. 

To compute the suitable network parameters, the loss function proposed by He et al. (2017), has 

been used. This loss function is defined as follows, 

𝐿 = 	𝐿(<> + 𝐿?:@ + 𝐿";>/ 																																																								(3) 

where L represents the total loss function of the model, Lcls is the classification loss, Lbox is the 

bounding box regression loss, and Lmask is the average binary cross-entropy loss. Particularly, the 

classification loss (Lcls) is computed according to, 

𝐿(<> =
1
𝑁(<>

k−𝑙𝑜𝑔[𝑝!𝑝!∗ + (1 − 𝑝!∗)(1 − 𝑝!)]
!

																																				(4) 

where Ncls are the number of categories, pi is the probability that the i-th ROI is predicted to be the 

target. Here, when the predicted ROI is foreground 𝑝!∗ = 1, otherwise 𝑝!∗ = 0.  

On the other hand, the bounding box regression loss (Lbox) is computed by the following expression, 



  

𝐿?:@ =
1

𝑁?:@
k𝑝!∗𝑅(𝑡! , 𝑡!∗)
!

																																															(5) 

where Nbox is the number of pixels in the feature map, R(·) is a smooth function, ti represents the 

four parameterized coordinate vectors of the predicted ROIs, and 𝑡!∗ indicates the coordinate vector 

of the real label. 

Finally, the mask loss (Lmask) calculation is given by, 

𝐿";>/ = −
1
𝑁ko𝑦!∗ log1𝑝(𝑦!): − (1 − 𝑦!∗) log11 − 𝑝(𝑦!):p

!

																			(6) 

where N represents the number of pixels, 𝑝!∗ is the predicted k-th class in that pixel’s location, and 

p(yi) is the probability of the yi predicted category. 

 

Behavior of loss functions and mIoU during training 

The behavior of the loss functions in the training stage for the deep learning models can be seen in 

Figure 7. The green and black curves show the training behavior of the proposed residual U-Net 

network with ResNet50 and ResNet101 backbones, respectively. The red and blue curves 

correspond to Mask R-CNN-ResNet50 and Mask R-CNN-ResNet101, respectively. Similarly, the 

magenta and cyan curves represent Mask R-CNN-ASPP-ResNet50 and Mask R-CNN-ASPP-

ResNet101, respectively. 

From Figure 7, it may be observed that the Mask R-CNN-based architectures’ training and 

validation error curves oscillate a bit during the entire training process. In contrast, the error curves 

of the residual U-Net model present a monotonically decreasing behavior. Note that the oscillation 

error of the Mask R-CNN-based models may be attributed to the dependency on the mask, class, 

and box loss functions used during training, as these networks depend on the “correctly” detecting 

ROIs, which is carried out by the RPN block. 

According to Figure 7, it can also be observed that the overall error of the Mask R-CNN-ASPP 

architectures had a lower magnitude during all the training steps than the error of the original Mask 

R-CNN architectures. In particular, Mask R-CNN-ASPP-ResNet50 had better loss behavior. 

On the other hand, the mIoU metric allows a straight evaluation of a segmentation model’s 

performance because it indicates the overlap of the prediction mask over the ground truth. 

Therefore, the value of this metric over the validation data at each epoch was registered. Figure 8 

shows the behavior of the mIoU metric. It can be appreciated that the highest value was given by 

residual U-Net-ResNet101 during the training process, followed by residual U-Net-ResNet50. The 

mIoU of the Mask R-CNN-ASPP networks in all epochs was superior to that of the original Mask 

R-CNN architecture. 

 

Performance of deep learning models over the classes 



  

To evaluate the performance of each model, 10% of the data from the entire dataset was used. Note 

that none of these data was used during training. The classification results achieved by each model 

are presented in Table 3. 

From Table 3, it can be appreciated that the Mask R-CNN-ASPP models have shown better 

Precision than the original Mask R-CNN models. Among classes, Mask R-CNN- ASPP-ResNet101 

depicted higher Precision values than Mask R-CNN-ASPP-ResNet50, except for class soil, where 

Mask R-CNN-ASPP-ResNet50 is slightly superior. In this way, the Precision shown by Mask R-

CNN-ASPP-ResNet101 for the classes Crop, NLW, and BLW was 5.75%, 19.88%, and 20.39% 

higher, with respect to values obtained by the Mask R-CNN-ResNet50 model. However, the 

Precision values of the Mask R-CNN- ASPP models were also surpassed by those obtained by the 

residual U-Net model. The best residual U-Net model was the one whose backbone was ResNet101, 

whose Precision was 7.13%, 19.34%, and 1.94% higher than that of Mask-R-CNN-ASPP-

ResNet101 for the classes Crop, NLW, and BLW, accordingly. 

Regarding the Recall metric among the plant classes, the Mask R-CNN-ASPP-ResNet50 model has 

performed better than the Mask R-CNN-ASPP-ResNet101 model, except for the class NLW. In the 

case of the Mask R-CNN models, this metric was better yielded by Mask R-CNN-ResNet50. 

Nevertheless, the Recall value depicted by Mask R-CNN-ASPP-ResNet50 for the classes Crop, 

NLW, and BLW was 22.18%, 19.28%, and 5.83% superior, respectively, to that shown by Mask 

R-CNN-ResNet50. However, as observed in Table 3, the Recall exhibited by residual U-Net-

ResNet101 surpassed that of the Mask R-CNN-ASPP-ResNet50 model in the three plant classes. 

Then, residual U-Net-ResNet101 exhibited 23.28%, 38.03%, and 14.08% higher Recall rates than 

Mask R-CNN-ASPP-ResNet50 for the Crop, NLW, and BLW classes respectively. 

Concerning the behavior of the DSC metric, the two Mask R-CNN-ASPP models have obtained 

higher DSC values than the Mask R-CNN models. However, the performance of the two Mask-R-

CNN-ASPP models was surpassed by the residual U-Net models. The DSC of Mask R-CNN-ASPP-

ResNet50, which was better than Mask-R-CNN-ASPP- ResNet101, was 20.88%, 19.75%, 2.64% 

superior for the classes, Crop, NLW, and BLW, accordingly, than that obtained by Mask R-CNN-

ResNet50, which was better than Mask R-CNN-ResNet101. Nevertheless, residual U-Net-

ResNet101, which was better than residual U-Net-ResNet50, manifested a superior DSC in 17.33%, 

31.15%, and 17.78% for the classes Crop, NLW, and BLW, respectively, than that of Mask R-CNN-

ASPP-ResNet50. 

Finally, Mask R-CNN-ResNet50 obtained better IoU than Mask R-CNN-ResNet101 for all the plant 

classes. However, both overcame Mask R-CNN-ResNet50, the Mask R-CNN-ASPP-ResNet50, and 

the Mask R-CNN-ASPP-ResNet101 models. The IoU metric, obtained by Mask R-CNN-ASPP-

ResNet50, demonstrated a significant increase in performance compared to Mask R-CNN-

ResNet50. Specifically, we observed an increase of 22.88%, 17.04%, and 3.63% for the Crop, 



  

NLW, and BLW classes, respectively. Nevertheless, similar to the other metrics, the IoU of the 

residual U-Net models was better than that of the Mask R-CNN-ASPP-based models for all the 

plant classes. In this way, the IoU obtained by residual U-Net-ResNet101 was 25.73%, 39.16%, and 

17.93% better for the classes Crop, NLW, and BLW, respectively, than that obtained by Mask R-

CNN-ASPP-ResNet50. 

The suggested Mask R-CNN-ASPP models generally perform better than the Mask R-CNN models. 

Nevertheless, the performance of Mask R-CNN-ASPP-based models was overcome by the 

proposed residual U-Net models. 

 

Semantic segmentation comparison 

The performance of the trained model can be summarized by the confusion matrices in Figure 9. 

As it can be appreciated, all the models have generally classified the soil with a classification rate 

of over 97%. This behavior may be attributed to their predominance in the images. 

Regarding the pixel classification of Crop, NLW, and BLW, pixels belonging to the class BLW 

were the best classified by all the models, and the worst was the NLW class’s pixels. The high 

classification rate of the pixels belonging to the class BLW is attributed to the phenological 

appearance of the plant species that integrate this group. Note that this class differs morphologically 

from the plant species that integrate Crop and NLW. In contrast, the low-rate classification of the 

pixels belonging to the class NLW is also attributed to the phenological appearance of the plant that 

integrates the group because they are narrow and occupy a low area in the images, often classified 

as soil pixels. 

It is also observed from Figure 9, that Mask R-CNN-ResNet50 classified the pixels of the three 

plant classes better than Mask R-CNN-ResNet101. On the other hand, the Mask R-CNN-ASPP-

ResNet50 model has classified the pixels of the classes Crop and BLW better than the Mask R-

CNN-ASPP-ResNet101 but not the pixels of the class NLW. 

In the case of the proposed residual U-Net networks, when the ResNet50 is used as the backbone, 

the model correctly classified the pixels of the class BLW. Nevertheless, in the case of ResNet101, 

the model better classified the pixels of the classes Crop and NLW. 

It is appreciated that Mask R-CNN-ASPP-ResNet50 was 5.83% higher at recognizing BLW pixels 

than Mask R-CNN-ResNet50, contrasting the better model from each of the three groups on 

classifying the pixels. However, residual U-Net-ResNet50 was 14.54% better at classifying the 

pixels of BLW than Mask R-CNN-ASPP-ResNet50. Mask R-CNN-ASPP-ResNet50 was 22.18% 

superior at recognizing Crop pixels as such than Mask R-CNN-ResNet50. However, residual U-

Net-ResNet101 surpassed in 23.28% the recognition of the pixels of this class than Mask R-CNN-

ASPP-ResNet50. Finally, residual U-Net-ResNet101 classified 56.31% and 37.29% better the class 

NLW, compared to Mask R-CNN-ResNet50 and Mask R-CNN-ASPP-ResNet101, accordingly. 



  

In summary, from Figure 9, it is observed that all the models, some in a high percentage, 

misclassified as soil the pixels of the plant classes. Also, all the models confused the pixels of the 

class Crop with that of the class NLW, and vice versa. This behavior may also be imputed to the 

phenological appearance of the plants; since they are monocotyledonous plants, as consequence 

they may share some features. 

 

Discussion 

The average performance of each model, regarding the evaluation metrics, is shown in Figure 10. 

From all the evaluated metrics (Precision, Recall, DSC, and mIoU), the proposed residual U-Net 

networks outreached Mask R-CNN-ASPP-based and Mask R-CNN-based networks on semantic 

segmentation of the classes Crop, NLW, BLW, and Soil of our dataset. Nonetheless, the two Mask 

R-CNN-ASPP-based models overcome the performance of the Mask R-CNN-based models. 

However, residual U-Net-ResNet101 achieved the highest values of all the metrics. 

Regarding the performance of Mask R-CNN-based models, Mask R-CNN-ResNet50 performs 

better than Mask R-CNN-ResNet101, which also turned out to be the one with the lowest 

performance. Lastly, Mask R-CNN-ASPP-ResNet50, in general, segmented our dataset better than 

Mask R-CNN-ASPP-ResNet101, as three out of the four metrics indicate. 

The residual U-Net-ResNet101 model achieved the highest Precision value (93.79%). This was 

significantly greater than the Precision values of other models, including residual U-Net-ResNet50, 

Mask R-CNN-ResNet50, Mask R-CNN-ResNet101, Mask R-CNN- ASPP-ResNet50, and Mask R-

CNN-ASPP-ResNet101, by 2.52%, 19.21%, 23.63%, 10.4%, and 8.39% respectively. The Precision 

value is an important metric that indicates the ability of the models to accurately classify each pixel 

of the images into the corresponding Crop, NLW, BLW, and Soil ground truth. 

The best network model for Recall’s case was the residual U-Net-ResNet101, achieving a 

remarkable value of 92.23%. Notably, the Recall of this network was 19.18% and 30.58% higher 

than that obtained by R-CNN-ASPP-ResNet50 and R-CNN-ResNet50, respectively, which were 

the best-performing networks in their respective categories. Concerning the DSC metric, R-CNN-

ASPP-ResNet50 outperformed R-CNN-ResNet50 by 10.63%. Nevertheless, the residual U-Net-

ResNet101 network, which performed optimally overall, displayed a DSC value 15.37% superior 

to that of R-CNN-ASPP-ResNet50. Lastly, the mIoU of residual U-Net-ResNet101 was 32.34% 

and 31.8% better than that of Mask R- CNN-ResNet50 and R-CNN-ASPP-ResNet50, respectively, 

which were the most effective networks in their categories. 

 

Visualization of segmented classes 

The visualization of the segmentation output of any model reinforces the comprehension of the 

numerical metrics. Therefore, a qualitative comparison from the segmentation output of the Mask 



  

R-CNN-ResNet50, Mask R-CNN-ASPP-ResNet50, and residual U-Net-ResNet101, which were 

the network architectures with the best results, is presented in Figure 11. In the first row, the input 

image is shown (Figure 11a). The second row (Figure 11b) shows the ground truth in which the 

colors green, red, and blue represent the Crop, NLW, and BLW classes, respectively. Subsequently, 

the third row (Figure 11c) presents the segmentation output of the Mask R-CNN-ResNet50 model, 

whereas the fourth row (Figure 11d) shows the segmentation carried out by the Mask R-CNN-

ASPP-ResNet50 model, and finally, in the last row (Figure 11d) the segmentation output of residual 

U-Net-ResNet101 model is shown. 

As can be observed, the three models have segmented each class correctly when the plants are 

“separated” from each other and when the objects in the image are big enough. These conditions 

commonly occur when the image has been captured at a short distance, as is depicted in the first 

column of Figure 11. Regarding the segmentation performed by the Mask R-CNN-ResNet50 and 

Mask R-CNN-ASPP-ResNet50, it can be noticed that both models tend to fail when there are more 

than two plant classes, when the plants are close to each other and when plants appear small in the 

images, as may be observed in the second, third and fourth column of Figure 11c and Figure 11d. 

Also, these images give an insight into how the Mask R-CNN-ResNet50 and Mask R-CNN-ASPP-

ResNet50 models commonly confuse pixels belonging to the class NLW with the Soil class. 

Nonetheless, in the image of the fourth column of Mask R-CNN-ASPP-ResNet50 model, the class 

NLW has been correctly segmented, attributed to the ASPP module implemented in its 

segmentation branch. The compilation of images presented here demonstrates that the residual U-

Net-ResNet101 model yields superior segmentation outcomes, as evidenced by the near-perfect fit 

of its output masks with the ground truth data acquired in real-world field settings. 

 

Comparison with state-of-the-art methods 

Even though detecting common weeds that grow in corn fields is challenging, scarce works have 

been reported in natural conditions at high-density plants and addressed by semantic segmentation 

approaches. In the work of Fawakherji et al. (2020), the original U-Net architecture (Ronneberger 

et al., 2015) and U-Net with VGG16 network (Simonyan and Zisserman, 2015) as the backbone 

(U-Net-VGG16) were evaluated. They reported a mIoU of 62% and 64%, for U-Net and U-Net-

VGG16 respectively, when these models were trained with a Sunflower dataset and tested over the 

combined datasets Carrots and SugarBeets. The classes were crop, weed, and soil. Then, they 

evaluated the U-Net-VGG16 over the individual datasets SugarBeets, Stuttgart, Carrots, and 

Sunflower, reporting 71%, 45%, 35%, and 39% of mIoU, respectively. Although this work has not 

been done in corn crops, the databases were generated under natural conditions. In this way, the 

mIoU of our best model, residual U-Net–ResNet101, is 16.12% higher than the U-Net-VGG16 

model reported in Fawakherji et al. (2020). 



  

Other related works on semantic segmentation of crop plants and weeds are presented in Table 4. 

Even though the crops and trained architectures differ from ours, they also share the complexity of 

training the deep learning models using datasets acquired in natural environments. Therefore, the 

parameters dataset size, number of plant species in the dataset, DSC, and the mIoU have been 

highlighted to contrast them with our work. In this case, our work stands out from the others because 

a dataset with 10,200 images and nine plant species has been used. Furthermore, our proposed 

model has achieved superior performance compared to the most related state-of-the-art works, as 

demonstrated by the DSC and mIoU metrics. Table 4 shows that the datasets of the related works 

contain fewer images than our dataset. Increasing the number of images and plant species also 

increases the number of features the models need to learn, making the task more challenging. Our 

mIoU was 25.32% higher than that reported by Ma et al. (2019), despite their dataset being smaller. 

Khan et al. (2020) also used a reduced dataset with two plant species; their reported DSC and mIoU 

were 12.9% and 16.07% lower than those obtained by our best model. Among the works listed in 

Table 4, Zenk et al. (2022) reported the highest metric values; however, they only segmented wheat 

crops. Additionally, although Kamath et al. (2022) and Picon et al. (2022) increased their datasets, 

however, these are on average 80% smaller than ours. The mIoU obtained by Kamath et al. (2022) 

was 24.69% lower than ours. Conversely, the DSC of Picon et al. (2022), whose dataset contains 

seven classes, was 67.66% lower than that reached by our model.  

 

Conclusions 

This work proposes a residual U-Net network for semantic segmentation of crop and weed plants 

under real natural field conditions. The implemented residual U-Net network was built using a 

ResNet-based block in the encoding stage (backbone). 

The experimental dataset used is made up of 10,200 images containing 59,681 labels, from which 

18,423 are Crop, 18,636 are BLW, and 22,622 are NLW. These images have been captured under 

non-controlled conditions and have also been manually annotated. 

For comparison purposes, two different deep learning models with corresponding variations have 

been used to analyze the experimental dataset, including Mask R-CNN and an enhanced Mask R-

CNN. The enhanced Mask R-CNN (denoted as Mask R-CNN-ASPP) uses an Atrous Spatial 

Pyramid Pooling (ASPP) module implemented over the segmentation branch of the Mask R-CNN 

model. Mainly, ResNet50 and ResNet101 were the used architectures. Hence, six different networks 

have been implemented: the two proposed models, residual U-Net-ResNet50 and residual U-Net-

ResNet101, together with four models used for comparisons: Mask R-CNN-ResNet50, Mask R-

CNN-ResNet101, Mask R-CNN-ASPP-ResNet50, and Mask R-CNN-ASPP-ResNet101. 

Experimental results have shown that the performance of the two Mask R-CNN-ASPP models 

overcomes the performance of the Mask R-CNN models. Nonetheless, the performance of the two 



  

Mask R-CNN-ASPP models has also been outreached by the performance of the two proposed 

residual U-Net models. In particular, residual U-Net-ResNet101 was the best network, achieving a 

performance of 92.98% and 87.12% in terms of the metrics Dice coefficient (DSC) and mean 

intersection over Union (mIoU), respectively. These results are 15.57% and 21.8% better than the 

reached by the Mask R-CNN-ASPP-ResNet50 network, which was the second-best Mask R-CNN-

ASPP-based model. 

Regarding the plant classes, the experimental results have consistently demonstrated that the models 

achieved the highest accuracy in classifying pixels belonging to the broad-leaf weeds (BLW) class. 

In particular, the pixels representing NLW were often misclassified as Soil pixels, indicating a 

higher degree of confusion between these two classes compared to the other classes. 

In future work, an increase in the number of elements of the dataset, with annotated labels, will be 

made so that it is possible to have a balanced dataset (same amount of data per class) and thus avoid 

using the data augmentation technique. 
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Figure 1. Methodology overview for crop/weed semantic segmentation in natural corn fields. The 
ground-level input image is shown on the left-hand side. In the center, the training/testing deep 
learning model is presented. On the right-hand side, the semantic segmented image is shown. This 
output image shows in green the segmented crop plant, in red the narrow-leaf weeds (NLW), and 
in blue the broad-leaf weeds (BLW). 
 

 

 
Figure 2. Sample images of our dataset. The first row shows individual plant images, while the 
second row features images of multiple plants, exhibiting scenarios of overlapping leaves, 
occlusion, and soil appearance variability. Finally, the last row depicts images of multiple small 
plants, likely captured from the maximum possible distance. 
 



  

 
 
Figure 3. Residual U-Net architecture representation designed for semantic segmentation of weed 
plants and corn crops.  
 

 

 



  

           
         (a) ResNet architecture    (b) Identity block             (c) Convolutional block 
 

Figure 4. Description of the Backbone adopted for the proposed residual U-Net architecture.(a) 
Structure of the main blocks of both the ResNet50 and ResNet101. ) Identity residual block 
implemented. This block is used when the size of the feature maps is constant. (c) Convolutional 
residual block employed for transition steps. This block is needed when the size of feature maps is 
reduced. 
 



  

 
 

Figure 5. Illustration of the Mask R-CNN architecture for semantic segmentation of weed 
plants and corn crops. 

 

 

 

 
 

Figure 6. Illustration of the segmentation branch of the Mask R-CNN provided with ASPP to 
improve the segmentation of corn and weed plants. 
 



  

 
Figure 7. Total loss function behavior of the networks during the training process. 

 

 

 

 
 

Figure 8. mIoU behavior at each epoch of the networks during the training process. 

 

 

 



  

 

              
(a) Mask R-CNN-ResNet50                                         (b) Mask R-CNN-ResNet101 

             
(c) Mask R-CNN-ASPP-ResNet50                            (d) Mask R-CNN-ASPP-ResNet101 

             
(e) Residual U-Net-ResNet50                                         (f) Residual U-Net-ResNet101 

 

Figure 9. Confusion matrices showing the deep learning models’ classification performance. a,b) 
Confusion matrices corresponding to the R-CNN-based networks. c,d) Confusion matrices 
corresponding to the R-CNN-ASPP networks. e,f) Confusion matrices for the residual U-Net 
networks. 



  

 
 

Figure 10. Average performance metrics of the trained networks Mask R-CNN, Mask R-CNN-
ASPP, and residual U-Net.  
 

 
Figure 11. A visual comparison of the segmentation work done by the better three models in each 
network configuration.  

 



  

 

Table 1. Plant species of the experimental dataset and labels. 

Class  Scientific name LBLS LBLC 

Crop Zea mays 18,423 18,423 

NLW 

Cynodon dactylon 5,048 

18,636 
Eleusine indica 5,133 

Digitaria sanguinalis 3,401 

Cyperus esculentus 5,054 

BLW 

Portulaca oleracea 5,100 

22,622 
Tithonia tubaeformis (Jacq.) Cass. 5,027 

Amaranthus spinosus 7,388 

Malva parviflora 5,107 
LBLS, Labels per species; LBLC, Labels per class. 

 

Table 2. Performance evaluation metrics for semantic segmentation models. 

Name Symbol Expression 

Precision Pr 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

Recall Re 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

Dice coefficient DSC 
2𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

Intersection over union IoU 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

mean IoU mIoU 
1
𝐶k𝐼𝑜𝑈-

,

-*)

 

TP, true positive; FP, false positive; TN, true negative; FN, false negative; C, number of classes. 

  



  

Table 3. Performance of the networks on classifying the classes under study. 

Class Metric Mask R-CNN Mask R-CNN-ASPP Residual U-Net 
RN50 RN101 RN50 RN101 RN50 RN101 

Crop 

Pr (%) 66.62 65.85 83.95 86.50 91.15 93.63 
Re(%) 45.52 36.41 67.70 62.95 88.53 90.98 
DSC (%) 54.08 46.89 74.96 72.87 89.82 92.29 
IoU(%) 37.06 30.62 59.94 57.32 81.52 85.67 

NLW 

Pr (%) 51.49 36.84 71.45 71.88 87.02 91.22 
Re(%) 29.60 15.93 47.88 48.62 83.88 85.91 
DSC (%) 37.59 22.59 57.34 58.00 85.42 88.49 
IoU(%) 23.15 12.51 40.19 40.85 74.55 79.35 

BLW 

Pr (%) 83.85 83.38 82.65 89.60 88.32 91.54 
Re(%) 73.05 64.74 78.88 63.69 93.43 92.96 
DSC (%) 78.08 72.88 80.72 74.46 90.80 92.24 
IoU(%) 64.04 57.34 67.67 59.31 83.15 85.60 

Soil 

Pr (%) 96.36 94.59 95.51 93.62 98.61 98.79 
Re(%) 98.44 98.47 97.76 98.54 98.53 99.07 
DSC (%) 97.39 96.49 96.62 96.01 98.57 98.93 
IoU(%) 94.91 93.22 93.47 92.34 97.18 97.88 

RN50, ResNet50; RN101, ResNet101. 

 

 

 

Table 4. Performance of related works upon semantic segmentation of crop/weed in natural 
environments. 

Reference Model Classes DS NPS DSC mIoU 
% % 

Our work   Residual U-Net 
(ResNet101) 

Corn plants 
10,200 9 92.98 87.12 Narrow-leaf weeds 

Broad-leaf weeds 
Ma et al. 
(2019) 

SegNet 
(VGG16) 

Rice seedling weeds  28 - - 61.8 

Khan et al. 
(2020) CED-Net Rice 24 2 80.08 71.05 Sagitaria trifolia 
Zenk et al. 
(2022)  

DeepLab V3+ 
(ResNet50) Wheat crop 190 - 86.3 77.5 

Kamath et 
al. (2022) 

PSPNet 
(ResNet50) 

Paddy crop 
1,690 - - 62.43 Broadleaved weed 

Sedges 

Picon et al. 
(2022) PSPNet 

Corn plants 
1,679 7 25.32 - Grass-leaved weeds 

Broadleaf weeds 
DS: Dataset size (number of images); NPS: Number of plant species; DCS: Dice coefficient, and mIoU: mean Intersection over 
Union. 
 


