Long-term monitoring of deficit irrigation regimes on citrus orchards in Sicily

Published:23 December 2021
Abstract Views: 1059
PDF: 488
HTML: 32
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The study aims to identify the responses of citrus orchards (C. sinensis (L.) Osbeck), grown under typical Mediterranean climatic conditions, to deficit irrigation (DI) regimes applied over more than a decade (2010-2020). In particular, the DI regimes were declined at the study site in terms of sustained deficit irrigation, regulated deficit irrigation, partial drying of the root-zone, with increasing severity of the water deficit, from 25% to 50% of the crop evapotranspiration, using surface and sub-surface micro-irrigation techniques. Long-term monitoring was set up for identifying the main processes acting at the soil-plant-atmosphere continuum (SPAC) level through direct in situ measurements of mass and energy fluxes (i.e., via micrometeorological technique) and the estimation of ETc and transpiration fluxes (i.e., via sap flow method), and the soil-plant-water processes (via geoelectrical techniques). In addition, the main physiological, qualitative, and quantitative parameters were evaluated since the beginning of the experiment. The results of the long-term experiment demonstrated the great adaptability of the crop species to sustain even the highest water reductions without substantial alterations of the main marketable productive and qualitative characteristics, evidencing the importance of controlling the SPAC dynamics for correctly applying the water restriction regimes.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Crossref
Scopus
Google Scholar
Europe PMC
Adeyemi O., Grove I., Peets S., Norton T. 2017. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability 9:353. DOI: https://doi.org/10.3390/su9030353
Allen R.G., Pereira L.S., Raes D., Smith M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56, 300 (9), D05109. Food and Agriculture Organization, Rome, Italy.
Aubinet M., Aubinet M., Grelle A., Ibrom A., Rannik Ü., Moncrieff J., Foken T., Kowalski A.S., Martin P.H., Berbigier P., Bernhofer C., Clement R., Elbers J., Granier A., Grünwald T., Morgenstern K., Pilegaard K., Rebmann C., Snijders W., Valentini R., Vesala T. 1999. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res. 30:113-75. DOI: https://doi.org/10.1016/S0065-2504(08)60018-5
Binley A.M., Kemna A. 2005: DC resistivity and induced polarization methods. In: Rubin Y. and Hubbard S.S. (Eds.), Hydrogeophysics. Water Sci. Technol. Library, Ser. 50. Springer, New York, NY, USA, pp. 129-156. DOI: https://doi.org/10.1007/1-4020-3102-5_5
Capra A., Consoli S., Russo A., Scicolone B. 2008: Integrated agro-economic approach to deficit irrigation on lettuce crops in Sicily (Italy). J. Irrig. Drain. Eng. 134:437-45. DOI: https://doi.org/10.1061/(ASCE)0733-9437(2008)134:4(437)
Consoli S., O’Connell N., Snyder R. 2006. Measurement of light interception by navel orange orchard canopies: case study of Lindsay, California. J. Irrig. Drain. Eng. 132:9-20. DOI: https://doi.org/10.1061/(ASCE)0733-9437(2006)132:1(9)
Consoli S., Stagno F., Roccuzzo G., Cirelli G.L., Intrigliolo F. 2014. Sustainable management of limited water resources in a young orange orchard. Agric. Water Manag. 132:60-8. DOI: https://doi.org/10.1016/j.agwat.2013.10.006
Consoli S., Stagno F., Vanella D., Boaga J., Cassiani G., Roccuzzo G. 2017. Partial root-zone drying irrigation in orange orchards: effects on water use and crop production characteristics. Eur. J. Agron. 82:190-202. DOI: https://doi.org/10.1016/j.eja.2016.11.001
D’Emilio A., Aiello R., Consoli S., Vanella D., Iovino M. 2018. Artificial neural networks for predicting the water retention curve of sicilian agricultural soils. Water 10:1431. DOI: https://doi.org/10.3390/w10101431
English M.J. 1990. Deficit irrigation: an analytical framework. J. Irrig. Drain. Eng. 116:399-412 DOI: https://doi.org/10.1061/(ASCE)0733-9437(1990)116:3(399)
Fereres E., Soriano M.A. 2006. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58:147-59. DOI: https://doi.org/10.1093/jxb/erl165
García-Tejero I., Jiménez-Bocanegra J.A., Martínez G., Romero R., Durán-Zuazo V.H., Muriel-Fernández J.L. 2010. Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. salustiano]. Agric. Water Manage. 97:614-22. DOI: https://doi.org/10.1016/j.agwat.2009.12.005
Kimball D. 1999. Citrus processing: a complete guide. 2nd ed. Springer, Boston, MA, USA. DOI: https://doi.org/10.1007/978-1-4615-4973-4
Klein T. 2014. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 28:1313-20. DOI: https://doi.org/10.1111/1365-2435.12289
La Malfa S., Distefano G., Domina F., Nicolosi E., Toscano V., Gentile A. 2011. Evaluation of citrus rootstock transgenic for rolABC genes. Acta Hortic. 892:131-40. DOI: https://doi.org/10.17660/ActaHortic.2011.892.16
Lo Cicero L., Puglisi I., Nicolosi E., Gentile A., Ferlito F., Continella A., Lo Piero A.R. 2016. Anthocyanin levels and expression analysis of biosynthesis-related genes during ripening of Sicilian and international grape berries subjected to leaf removal and water deficit. J. Agr. Sci. Tech. 18:1333-44.
Longo-Minnolo G., Vanella D., Consoli S., Intrigliolo D.S., Ramírez-Cuesta J.M. 2020. Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard. Agric. Water Manag. 231:105967. DOI: https://doi.org/10.1016/j.agwat.2019.105967
Maestre-Valero J.F., Testi L., Jiménez-Bello M.A., Castel J.R., Intrigliolo D.S. 2017. Evapotranspiration and carbon exchange in a citrus orchard using eddy covariance. Irrig. Sci. 35:397-408. DOI: https://doi.org/10.1007/s00271-017-0548-6
Mary B., Vanella D., Consoli S., Cassiani G. 2019. Assessing the extent of citrus trees root apparatus under defcit irrigation via multi-method geo-electrical imaging. Sci. Rep. 9:1-10. DOI: https://doi.org/10.1038/s41598-019-46107-w
Motisi A., Rossi F., Consoli S., Papa R., Minacapilli M., Rallo G., Cammalleri C., D’Urso G. 2012. Eddy covariance and sap flow measurement of energy and mass exchanges of woody crops in a Mediterranean environment. Acta Hortic. 951:121-7. DOI: https://doi.org/10.17660/ActaHortic.2012.951.14
Ortuño M.F., García-Orellana Y., Conejero W., Ortuno M.F., García-Orellana Y., Conejero W., Ruiz-Sánchez M.C., Alarcón J.J., Torrecillas A. 2006. Stem and leaf water potentials, gas exchange, sap flow, and trunk diameter fluctuations for detecting water stress in lemon trees. Trees 20:1-8. DOI: https://doi.org/10.1007/s00468-005-0004-8
Puglisi I., Nicolosi E., Vanella D., Lo Piero A.R., Stagno F., Saitta D., Roccuzzo G., Consoli S., Baglieri A. 2019. Physiological and biochemical responses of orange trees to different deficit irrigation regimes. Plants 8:423. DOI: https://doi.org/10.3390/plants8100423
Saitta D., Consoli S., Ferlito F., Torrisi B., Allegra M., Longo-Minnolo G., Ramírez-Cuesta J.M., Vanella D. 2021. Adaptation of citrus orchards to deficit irrigation strategies. Agric. Water Manag. 247:106734. DOI: https://doi.org/10.1016/j.agwat.2020.106734
Saitta D., Vanella D., Ramírez-Cuesta J.M., Longo-Minnolo G., Ferlito F., Consoli S. 2020. Comparison of orange orchard evapotranspiration by eddy covariance, sap flow, and FAO-56 methods under different irrigation strategies. J. Irrig. Drain. Eng. 146:05020002. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0001479
Scholander P.F., Bradstreet E.D., Hemmingsen E.A., Hammel H.T. 1965. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148:339-46. DOI: https://doi.org/10.1126/science.148.3668.339
Swanson R.H., Whitfield D.W.A. 1981. A numerical analysis of heat pulse velocity theory and practice. J. Exp. Bot. 32:221-39. DOI: https://doi.org/10.1093/jxb/32.1.221
Vanella D., Cassiani G., Busato L., Boaga J., Barbagallo S., Binley A., Consoli S. 2018. Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation. J. Hydrol. 556:310-4. DOI: https://doi.org/10.1016/j.jhydrol.2017.11.025
Vanella D., Consoli S. 2018. Eddy covariance fluxes versus satellite-based modelisation in a deficit irrigated orchard. Ital. J. Agrometeorol. 2:41-52.
Vanella D., Ramírez-Cuesta J.M., Intrigliolo D.S., Consoli S. 2019. Combining electrical resistivity tomography and satellite images for improving evapotranspiration estimates of citrus orchards. Remote Sens. 11:373. DOI: https://doi.org/10.3390/rs11040373
Vanella D., Ramírez-Cuesta J.M., Sacco A., Longo-Minnolo G., Cirelli G.L., Consoli S. 2020. Electrical resistivity imaging for monitoring soil water motion patterns under different drip irrigation scenarios. Irrig. Sci. 1-13. DOI: https://doi.org/10.1007/s00271-020-00699-8

How to Cite

Vanella, D. (2021) “Long-term monitoring of deficit irrigation regimes on citrus orchards in Sicily”, Journal of Agricultural Engineering, 52(4). doi: 10.4081/jae.2021.1193.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.