Evaluating flow regime alterations due to point sources in intermittent rivers: A modelling approach

Published: 28 June 2022
Abstract Views: 821
PDF: 436
S1: 201
S2: 217
S3: 160
HTML: 41
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Hydrological regime alterations may strongly influence river morphology, water quality, and river ecosystem. The present paper aimed to define an integrated modelling framework for analysing the hydrological regime alterations induced by point sources (PSs) discharges in data-limited regions through two case studies: the Canale d’Aiedda (Italy) and Nil wadi (Algeria). Long time series of daily streamflow in un-impacted and impacted (PSs discharges) conditions were generated by applying the Soil and Water Assessment Tool model and the hydrological regime was characterised by using several hydrological indicators. Flow regime alterations due to PSs were assessed with the range of variability approach. Results showed that the PSs induced alterations of some flow regime components (magnitude, duration, and timing). Hydrological regime classification of the river reaches receiving wastewaters from PSs shifted from intermittent to perennial. All the components of the low flow (1-, 3-, 7-, 30-, and 90-day minimum flow, zero-days) and the monthly flow recorded in summer were severely altered. Minor hydrological alterations were assessed for high flow components (1-, 3-, 7-, 30-, and 90-day maximum flow) and mean monthly flow in the wet period. The timing of minimum flow was found to shift later in the year. This study may support river ecologists in the ecological status evaluation.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abbaspour K.C., Vaghefi S.A., Yang H., Srinivasan R. 2019. Global soil, landuse, evapotranspira-tion, historical and future weather databases for SWAT applications. Sci. Data 6:263.
Abbaspour K.C., 2015. Calibration and uncertainty programs for SWAT. SWAT-CUP: SWAT cali-bration and uncertainty programs – a user manual. Eawag, Dübendorf, Switzerland.
Abdelwahab O.M.M., Ricci G.F., De Girolamo A.M., Gentile F. 2018. Modelling soil erosion in a Mediterranean watershed: comparison between SWAT and AnnAGNPS models. Environ. Res. 166:363-76.
Abdelwahab O.M.M., Bingner R.L., Milillo F., Gentile F. 2016. Evaluation of alternative manage-ment practices with the AnnAGNPS model in the Carapelle watershed. Soil Sci. 181:293-305.
Arnold J.G., Kiniri J.R., Srinivasan R., Williams J.R., Haney E.B., Neitsch S.L., 2012a. Soil & Water Assessment Tool: Input/Output Documentation Version 2012. Texas Water Resource Institute.
Arnold J.G., Moriasi D.N., Gassman P.W., Abbaspour K.C., White M.J., Srinivasan R., Santhi C., Harmel R.D., van Griensven A., Van Liew M.W., Kannan N., Jha M.K. 2012b. SWAT: model use, calibration, and validation. Trans. ASABE 55:1491-508.
Arnold J.G., Srinivasan R., Muttiah R.S., Williams J.R. 1998. Large area hydrologic modeling and assessment - part 1: model development. J. Am. Water Resour. Assoc. 34:73-89.
Arsenault R., Brissette F., Martel J.-L. 2018. The hazards of split-sample validation in hydrological model calibration. J. Hydrol. 566:346-62.
Arthington A.H., Bernardo J.M., Ilhéu M. 2014. Temporary rivers: linking ecohydrology, ecological quality and reconciliation ecology. River Res. Appl. 30:1209-15.
Baghdad A., Bouazi R., Bouftouha Y., Bouabsa L., Fagel N. 2017. Mineralogical characterization of Neo-gene clay areas from the Jijel basin for ceramic purposes (NE Algeria -Africa). Appl. Clay Sci. 136:176-83.
Beaufort A., Carreau J., Sauquet E., 2019. A classification approach to reconstruct local daily drying dynamics at headwater streams. Hydrol. Process. 33:1896-912.
Bezak N., Mikoš M., Borrelli P., Alewell C., Alvarez P., Anache J.A., Baartman J., Ballabio C. 2021. Soil erosion modelling: A bibliometric analysis. Environ. Res. 197:111087.
Bonada N., Rieradevall M., Prat N. 2007. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiol. 589:91-106.
Brouziyne Y., Belaqziz S., Benaabidate L., Aboubdillah A., El Bilali A., Elbeltagi A., Tzoraki O., Chehbouni A. 2021. Modeling long term response of environmental flow attributes to future climate change in a North African watershed (Bouregreg watershed, Morocco). Ecohydrol. Hy-drobiol. [Epub ahead of print].
Bunn S.E., Thoms M.C., Hamilton S.K., Capon S.J. 2006. Flow variability in dryland rivers: boom, bust and the bits in between. River Res. Appl. 22:179-86.
Costigan K.H., Kennard M.J., Leigh C., Sauquet E., Boulton A.J. 2017. Flow regimes in intermittent rivers and ephemeral streams. Intermitt. Rivers Ephemer. Streams 51-78.
D’Ambrosio E., Gentile F., De Girolamo A.M. 2020. Assessing the sustainability in water use at the basin scale through water footprint indicators. J. Clean Prod. 244:118847.
D’Ambrosio E., De Girolamo A.M., Spanò M., Corbelli V., Capasso G., Morea M., Velardo R., Abdelwahab Ossama M.M., Lonigro A., Milillo F., Ricci G.F., Romano G., Calabrese A., Casale B., Mauro R., Pappagallo G., Gentile F. 2019. A spatial analysis to define data require-ments for hydrological and water quality models in data-limited regions. Water 11:267.
D’Ambrosio E., De Girolamo A.M., Barca E., Ielpo P., Rulli M.C., 2017. Characterising the hydro-logical regime of an ungauged temporary river system: a case study. Environ. Sci. Pollut. Res. 24:13950-66.
Datry T., Bonada N., Boulton A., 2017. General introduction. In: Intermittent Rivers and Ephemeral Streams: Ecology and Management. Academic Press, pp. 1-597.
Datry T., Larned S.T., Tockner K., 2014. Intermittent rivers: A challenge for freshwater ecology. Bi-oSci. 64: 229-35.
De Girolamo A.M., Drouiche A., Ricci G.F., Parete G., Gentile F., Debieche T-H. 2022. Characteris-ing flow regimes in a semi-arid region with limited data availability: The Nil Wadi case study (Algeria). J. Hydrol. Regional Stud. 41:101062.
De Girolamo A.M., Spanò M., D’Ambrosio E., Ricci G.F., Gentile F. 2019. Developing a nitrogen load apportionment tool: Theory and application. Agric. Water Manage. 226:105806.
De Girolamo A.M., Barca E., Pappagallo G., Lo Porto A. 2017. Simulating ecologically relevant hy-drological indicators in a temporary river system. Agric. Water Manage. S0378377416302025.
De Girolamo A.M., Lo Porto A., Pappagallo G., Tzoraki O., Gallart F. 2015a. The hydrological sta-tus concept. Application at a temporary river (Candelaro, Italy). River Res. Appl. 31:892-903.
De Girolamo A.M., Pappagallo G., Santese G., Lo Porto A. 2015b. An eco-hydrological assessment method for temporary rivers. The Celone and Salsola rivers case study (SE, Italy). J. Limnol. 51:1-10.
Dobriyal P., Badola R., Tuboi C. 2017. A review of methods for monitoring streamflow for sustaina-ble water resource management. Appl. Water Sci. 7:2617-28.
Drouiche A., Debieche T.-H., Zahi F., Mahdid S., Gentile F., Bouldjedri M., Benessam S. 2021. Quantification and modeling of temporary wadi flow, Case of the Nil wadi (Jijel, NE Algeria), 3rd Atlas Georesources International Congress (AGIC2021), Tunisia.
Ehlers L.B., Sonnenborg T.O., Refsgaard J.C. 2019. Observational and predictive uncertainties for multiple variables in a spatially distributed hydrological model. Hydrol. Process. 33:833-48.
Ehrmann F. 1928. Geological map of El Milia, Map N°29, 1/50 000. Geological Survey of Algeria.
Fortesa J., Ricci G.F., García-Comendador J., Gentile F., Estrany J., Sauquet E., Datry T., De Giro-lamo A.M. 2021. Analysing hydrological and sediment transport regime in two Mediterranean intermittent rivers. Catena 196:104865.
Gallart F., Prat N., García-Roger E.M., Latron J., Rieradevall M., Llorens P., Barberá G.G., Brito D., De Girolamo A.M., Lo Porto A., Buffagni A., Erba S., Neves R., Nikolaidis N.P., Perrin J.L., Querner E.P., Quiñonero J.M., Tournoud M.G., Tzoraki O., Skoulikidis N., Gómez R., Sánchez-Montoya M.M., Froebrich J., 2012. A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota. Hydrol Earth Syst Sci. 16:3165-82.
Gallart F., Llorens P., Latron J., Cid N., Rieradevall M., Prat N. 2016. Validating alternative method-ologies to estimate the regime of temporary rivers when flow data are unavailable. Sci. Total Environ. 565:1001-10.
Galván L., Olías M., Izquierdo T., Cerón J.C., Fernández de Villarán R. 2014. Rainfall estimation in SWAT: An alternative method to simulate orographic precipitation. J. Hydrol. 509:257-65.
Gassman Philip W., Sadeghi Ali M., Srinivasan R. 2014. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 43:1-8.
Guerricchio A., Simeone V. 2013. Caratteri geologico–strutturali dell’area di Taranto e potenziali im-plicazioni sulla genesi del Mar Piccolo di Taranto (Puglia). pp. 219-235 in Proc. 34th Corso di Aggiornamento in Tecniche per la Difesa dall’inquinamento, Edibio, Cosenza, Italy.
Harrelson C.C., Rawlins C.L., Potyondy J.P. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245, U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO, USA.
Hargreaves G.H. 1975. Moisture availability and crop production. Trans. ASAE 18:980-4.
Hassan M.A., Egozi R. 2001. Impact of wastewater discharge on the channel morphology of ephem-eral streams. Earth Surf. Process. Landf. 26:1285-302.
Hengl T., Heuvelink G.B.M., Kempen B., Leenaars J.G.B., Walsh M.G., Shepherd K.D., Sila A., MacMillian R.A., Mendes de Jesus J., Tamene L., Tondoh J.E. 2015. Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLoS One 10:e0125814.
Hundt S., Blasch K., Aschonitis V.G. 2019. Laboratory assessment of alternative stream velocity measurement methods. PLoS One 14:e0222263.
Konrad C.P., Brasher A.M.D., May J.T. 2008. Assessing streamflow characteristics as limiting fac-tors on benthic invertebrate assemblages in streams across the western United States. Freshw. Biol. 53:1983-98.
Kupferberg S.J., Palen W.J., Lind A.J., Bobzien S., Catenazzi A., Drennan J., Power M.E. 2012. Ef-fects of flow regimes altered by dams on survival, population declines, and range-wide losses of California River-Breeding Frogs. Conserv. Biol. 26:513-24.
Larned S.T., Datry T., Arscott D.B., Tockner K. 2010. Emerging concepts in temporary river ecology. Freshw. Biol. 55:717-38.
Mahdid S., Chabour N., Debieche T.H. 2015. Fonctionnement hydrologique du bassin versant de l’oued Nil (Wilaya de Jijel, Nord-Est algérien). International Conference on African Large River Basins Hydrology, Hammamet, Tunisia. Available from: http://hydrologie.org/ACT/2015_Hammamet/S1/MAHDID_article.pdf
Messager M.L., Lehner B., Cockburn C., Lamouroux N., Pella H., Snelder T. 2021. Global preva-lence of non-perennial rivers and streams. Nature 594:391-7.
Mezger G., Gonzáles del Tánago M., De Stefano L. 2021. Environmental flows and the mitigation of hydrological alteration downstream from dams: the Spanish case. J. Hydrol. 598:125732.
Moges E., Demissie Y., Larsen L., Yassin F. 2021. Sources of hydrological model uncertainties and advances in their analysis. Water 13:28.
Moriasi D.N., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D., Veith T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50:885-900.
Myers N., Mittermeier R., Mittermeier C., da Fonseca G.A.B., Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-8.
Neitsch S.L., Arnold J.G., Kiniry J.R., Williams J.R. 2011. Soil and water assessment tool: theoretical documentation V. 2009. Texas Water Resources Institute, Technical Report No. 406 Texas A&M University System College Station, Texas, USA.
Olden J.D., Poff N.L. 2003. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Res. Appl. 19:101-21.
Pagano S.G., Sollitto D., Colucci M., Prato D., Milillo F., Ricci G.F., Gentile F. Setting up of an ex-perimental site for the continuous monitoring of water discharge, suspended sediment transport and groundwater levels in a Mediterranean Basin. Results of One Year of Activity. Water 2020:3130.
Panagos P., Borrelli P., Poesen J., Ballabio C., Lugato E., Meusburger K., Montanarella L., Alewell C. 2015. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 54:438-47.
Pastor A.V., Tzoraki O., Bruno D., Kaletová T., Mendoza-Lera C., Alamano A., Brummer M., Datry T., De Girolamo A.M., Jakubínský J., Logar I., Loures L., Ilhéu M., Koundouri P., Nunes J.P., Quintas-Soriano C., Sykes T., Truchy A., Jorda-Capdevilaw D. 2022. Rethinking ecosystem service indicators for their application to intermittent rivers. Ecol. Indicat. 137.108693.
Pluntke T., Pavlik D., Bernhofer C. 2014. Reducing uncertainty in hydrological modelling in a data sparse region. Environ. Earth Sci. 72:4801-6.
Poff N.L., Allan J.D., Bain M.B., Karr J.R., Prestegaard K.L., Richter B.D., Sparks R.E., Stromberg J.C. 1997. The natural flow regime. Biosci. 47:769-84.
Poff N.L., Zimmerman J.K.H. 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw. Biol. 55:194-205.
Prat N., Gallart F., Von Schiller D., Polesello S., García-Roger E.M., Latron J., Rieradevall M., Llorens P., Barberá G.G., Brito D., De Girolamo A.M., Dieter D., Lo Porto A., Buffagni A., Erba S., Nikolaidis N.P., Querner E.P., Tournoud M.G., Tzoraki O., Skoukulidis N., Gomez R., Sanchez-Montoya M., Tockner K., Froebrich J. 2014. The MIRAGE TOOLBOX: an inte-grated assessment tool for temporary streams. River Res Appl. 30:1318-34.
Rantz S.E., 1982. Measurement and computation of streamflow: Volume I. Measurement of stage and discharge. Geological Survey Water-Supply Paper 2175. U.S. Government Printing Office, Washington, D.C., USA.
Regione Puglia, 2001. Progetto Acla 2 - Studio per la caratterizzazione agronomica della regione Pu-glia e la classificazione del territorio in funzione della potenzialità produttiva. Progetto ACLA 2. P.O.P, Puglia 94-99. Regione Puglia, Bari, Italy.
Ricci, G., De Girolamo, A.M., Abdelwahab, O., Gentile, F., 2018. Identifying sediment source areas in a Mediterranean watershed using the swat model. Land Degrad. Dev. 29.1233-48.
Ricci G.F, D’ Ambrosio E., De Girolamo A.M., Gentile F. 2022. Efficiency and feasibility of Best Management Practices to reduce nutrient loads in an agricultural river basin. Agric. Water Man-age. 259:107241.
Richter B.D., Baumgartner J.V., Powell J., Braun D.P. 1996. A method for assessing hydrologic al-teration within ecosystems. Conserv. Biol. 10:1163-74.
Richter B.D., Baumgartner J.V., Wiginton R., Braun D.P. 1997. How much water does a river need? Freshw. Biol. 37:231-49.
Roy A.H., Freeman M.C., Freeman B.J., Wenger S.J., Ensign W.E., Meyer J.L. 2005. Investigating hydrologic alteration as a mechanism of fish assemblage shifts in urbanizing streams. J. N. Am. Benthol. Soc. 24:656-78.
Sabater S., Tockner K. 2009. Effects of hydrologic alterations on the ecological quality of river eco-systems. In: Sabater S., Barceló D. 2009. Water scarcity in the Mediterranean. The Handbook of Environmental Chemistry, vol 8. Springer, Berlin, Heidelberg, Germany.
Skoulikidis N., Vardakas L., Karaouzas I., Economou A., Dimitriou E., Zogaris S. 2011. Assessing water stress in Mediterranean lotic systems: insights from an artificially intermittent river in Greece. Aquat. Sci. 73:581-97.
Stanley E.H., Fisher S.G., Grimm N.B. 1997. Ecosystem expansion and contraction in streams. Bi-oSci. 47:427-35.
Stubbington R., Barthès A., Bercea S., Bolpagni R., Bouchez A., Bruno D., Bunting G., Cañedo-Argüelles M., Chadd R., Cid N.; Cvijanović D., Datry T., Durkota J., England J., Hayes C., Heino J., Laini A.; Leese F., Loskotová B., Maddock I., Milosevic D., Morais M., Munné A., Novais M.H., Pařil P., Pešić V., Polášek M., Pozojević I., Sánchez-Montoya M.M., Sarremejane R., Soininen J., Soria M., Straka M., Vardakas L., Westwood C.G, White J., Wilkes M. 2020 - Community Ecology and Biomonitoring in IRES: 58-84 in Intermittent Riv-ers and Ephemeral streams: What water managers need to know. Eds: Claire Magand (Coordi-nator), Maria Helena Alves, Eman Calleja, Thibault Datry, Gerald Dörflinger, Judy England, Antoni Munne, Iakovos Tziortzis, 181 pp. DOI: 10.5281/zenodo.3888473.
The Nature Conservancy 2009. Indicators of Hydrologic Alteration Version 7.1. User’s Manual. Available from: https://www.conservationgateway.org/Documents/IHAV7.pdf
Tóth G., Weynants M., van Liedekerke M., Panagos P., Montanarella L. 2013. Soil databases in sup-port of pan-european soil water model development and applications. Procedia Environ. Sci. 19:411-5.
Tramblay Y., Rouché N., Paturel J.-E., Mahé G., Boyer J.F., Amoussou E., Bodian A., Dacosta H., Dakhlaoui H., Dezetter A., Hughes D., Hanich L., Peugeot C., Tshimanga R., Lachassagne P. 2021. ADHI: the African Database of Hydrometric Indices (1950-2018). Earth Syst. Sci. Data 13:1547-60.
United States Department of Agriculture–Soil Conservation Service (USDA-SCS) 1972. National Engineering Handbook, section 4, Hydrology. Washington, DC, USA.
Wohl E., Lane S.N., Wilcox A.C. 2015. The science and practice of river restoration. Water Resour. Res. 51:5974-97.
Zema D. A., Denisi P., Taguas Ruiz E. V., Gòmez J. A., Bombino G., Fortunato D. 2016. Evaluation of surface runoff prediction by AnnAGNPS model in a large Mediterranean watershed covered by olive groves. Land Degrad. Develop. 27:811-22.
Zimmer M.A., Kaiser K.E., Blaszczak J.R., Zipper S.C., Hammond J.C.;.Fritz K.M.. Costigan K.H., Hosen J., Godsey S.E., Allen G.H., Kampf S., Burrows R.M., Krabbenhoft C.A., Dodds W., Hale R., Olden J.D., Shanafield M., DelVecchia A.G., Ward A.S., Mims M.C., Datry T., Bo-gan M.T., Boersma K.S., Busch M.H., Jones C.N., Burgin A.J., Allen D.C. 2020. Zero or not? Causes and consequences of zero flow stream gage readings. WIREs Water 7:e1436.

How to Cite

Ricci, G. F. (2022) “Evaluating flow regime alterations due to point sources in intermittent rivers: A modelling approach”, Journal of Agricultural Engineering, 53(2). doi: 10.4081/jae.2022.1333.

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.