Reuse of livestock waste for the reinforcement of rammed-earth materials: investigation on mechanical performances

Published: 2 February 2023
Abstract Views: 1205
PDF: 265
HTML: 8
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Agricultural wastes as an additive within raw earth materials could improve the mechanical and physical properties of new sustainable construction materials and enhance waste management from a circular economy perspective. This study intends to fill the lack of knowledge considering the mechanical effects of animal fibres on rammed-earth materials. The effects of livestock waste, i.e., sheep wool fibre (SWF), as a reinforcing element in building components produced using raw earth and lime-free mortars have been evaluated. The samples were made by varying the wool content (0.25% or 0.50% weight) and the length of the fibres (from 10 mm to 40 mm). Linear shrinkage, flexural strength, compressive strength, and fracture energy were evaluated on samples incorporating SWF, to assess the effects of this waste addition on the mechanical performances of new bio-composite material. The best result of the flexural strength was 1.06 MPa, exhibited by samples made with the longest and highest percentage of fibres, 40 mm, and 0.50%, respectively. The average compression strength was about 3.00 MPa. The average energy fracture of the composite was 806.38 (N/mm).

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Achenza M., Sanna U. 2009. Il Manuale tematico della terra cruda. Ed. DEI, pp. 126.
Agostino B., Galipoli W. 2015. Briques de terre crue : procédure de compactage haute pression et influence sur les propriétés mécaniques. 33èmes Rencontres l’AUGC, ISABTP/UPP, Anglet, 27 au 29 Mai 2015 1-9.
Al Rim K., Ledhem A., Douzane O., Dheilly R.M., Queneudec M. 1999. Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites. Cem. Concr. Compos. 21:269-76.
Alves Fidelis M.E., Pereira T.V.C., Gomes O.D.F.M., De Andrade Silva F., Toledo Filho R.D. 2013. The effect of fiber morphology on the tensile strength of natural fibers. J. Mater. Res. Technol. 2:149-57.
Araya-Letelier G., Concha-Riedel J., Antico F.C., Valdés C., Cáceres G. 2018. Influence of natural fiber dosage and length on adobe mixes damage-mechanical behavior. Constr. Build. Mater. 4:151.
Arrigoni A., Beckett C.T.S., Ciancio D., Pelosato R., Dotelli G., Grillet A.C. 2018. Rammed Earth incorporating recycled concrete aggregate: a sustainable, resistant and breathable construction solution. Resour. Conserv. Recycl. 5:025.
Aymerich F., Fenu L., Meloni P. 2012. Effect of reinforcing wool fibres on fracture and energy absorption properties of an earthen material. Constr. Build. Mater. 08:008.
Baeza F.J., Galao O., Zornoza E., Garcés P. 2013. Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites. Mater. Des. 51:1085-94.
Barreca F., Martinez Gabarron A., Flores Yepes J.A., Pastor Pérez J.J. 2019. Innovative use of giant reed and cork residues for panels of buildings in Mediterranean area. Resour. Conserv. Recycl. 10:005.
Bonoli A., Zanni S., Serrano-Bernardo F. 2021. Sustainability in building and construction within the framework of circular cities and european new green deal. The contribution of concrete recycling. Sustain. 13:1-16.
Cheung H.Y., Ho M.P., Lau K.T., Cardona F., Hui D. 2009. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. Part B Eng. 40:655-63.
Ciancio D., Jaquin P., Walker P. 2013. Advances on the assessment of soil suitability for rammed earth. Constr. Build. Mater. 42:40-7.
Clementi F., Lenci S., Sadowski T. 2008. Fracture characteristics of unfired earth. Int. J. Fract. 149:193-8.
Corbin A., Augarde C. 2014. Fracture energy of stabilised rammed earth. Procedia Mater. Sci. 3:1675-80.
Dénes O., Florea I., Manea D.L. 2019. Utilization of sheep wool as a building material. Procedia Manufact. 02:208.
Eliche-Quesada D., Felipe-Sesé M.A., López-Pérez J.A., Infantes-Molina A. 2017. Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks. Ceram. Int. 43:463-75.
Fagone M., Kloft H., Loccarini F., Ranocchiai G. 2019. Jute fabric as a reinforcement for rammed earth structures. Compos. Part B Eng. 2019:107064.
Galán-Marín C., Rivera-Gómez C., Bradley F. 2013. Ultrasonic, molecular and mechanical testing diagnostics in natural fibre reinforced, polymer-stabilized earth blocks. Int. J. Polym. Sci. 2013:130582.
Galán-Marín C., Rivera-Gómez C., Petric-Gray J. 2010a. Effect of animal fibres reinforcement on stabilized earth mechanical properties. J. Biobased Mater. Bioenergy 4:121-8.
Galán-Marín C., Rivera-Gómez C., Petric J. 2010b. Clay-based composite stabilized with natural polymer and fibre. Constr. Build. Mater. 01:008.
Ghavami K., Toledo Filho R.D., Barbosa N.P. 1999. Behaviour of composite soil reinforced with natural fibres. Cem. Concr. Compos. 21:39-48.
Hossain K.M.A., Lachemi M., Easa S. 2007. Stabilized soils for construction applications incorporating natural resources of Papua new Guinea. Res. Constr. Rec. 51:711-31.
Jannat N., Hussien A., Abdullah B., Cotgrave A. 2020. Application of agro and non-agro waste materials for unfired earth blocks construction: a review. Constr. Build. Mater. 254:119346.
Khedari J., Watsanasathaporn P., Hirunlabh J. 2005. Development of fibre-based soil-cement block with low thermal conductivity. Cem. Concr. Compos. 27:111-6.
Kouakou C.H., Morel J.C. 2009. Strength and elasto-plastic properties of non-industrial building materials manufactured with clay as a natural binder. Appl. Clay Sci. 44:27-34.
Ku H., Wang H., Pattarachaiyakoop N., Trada M. 2011. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 42:856-73.
Laborel-Préneron A., Aubert J.E., Magniont C., Tribout C., Bertron A. 2016. Plant aggregates and fibers in earth construction materials: a review. Constr. Build. Mater. 111:719-34.
Liuzzi S., Sanarica S., Stefanizzi P. 2017. Use of agro-wastes in building materials in the Mediterranean area: a review. Energy Procedia. 147:242-9.
Medvey B., Dobszay G. 2020. Durability of stabilized earthen constructions: a review. Geotech. Geol. Eng. 38:2403-25.
Mužíková B., Otcovská T.P., Padevět P. 2021. Fracture energy of illitic rammed earth with high water-clay ratio. Acta Polytech. CTU Proc. 30:53-7.
New Mexico, 2009. New Mexico earthen building materials code. Hous. Constr. Build. Codes Gen. Available from: https://doi.org/10.1017/CBO9781107415324.004
NZA 4298, 1998. New Zealand Standard: Materials and workmanship for earth buildings (NZS 4298:1998).
Oliver-Ortega H., Llop M.F., Espinach F.X., Tarrés Q., Ardanuy M., Mutjé P. 2018. Study of the flexural modulus of lignocellulosic fibers reinforced bio-based polyamide11 green composites. Compos. Part B Eng. 152:126-32.
Parisi F., Asprone D., Fenu L., Prota A. 2015. Experimental characterization of Italian composite adobe bricks reinforced with straw fibers. Compos. Struct. 122:300-7.
Parlato M., Porto S.M.C., Cascone G. 2021. Raw earth-based building materials: an investigation on mechanical properties of Floridia soil-based adobes. J. Agric. Eng. 52:1154.
Parlato M.C.M., Cuomo M., Porto S.M.C. 2022. Natural fibers reinforcement for earthen building components: mechanical performances of a low quality sheep wool (“Valle del Belice” sheep). Constr. Build. Mater. 326:126855.
Pelé-Peltier A., Fabbri A., Morel J.C., Hamard E., Lhenry M., 2022 A similitude relation to assessing the compressive strength of rammed earth from scale-down samples. Case Stud. Constr. Mater. 16:e00921
Petersson P.E. 1982. Comments on the method of determining the fracture energy of concrete by means of three-point bend tests on notched beams. (Report TVBM; Vol. 3011). Division of Building Materials, LTH, Lund University.
Quagliarini E., Lenci S. 2010. The influence of natural stabilizers and natural fibres on the mechanical properties of ancient Roman adobe bricks. J. Cult. Herit. 11:309-14.
Rajabinejad H., Bucişcanu I.I., Maier S.S. 2019. Current approaches for raw wool waste management and unconventional valorization: a review. Environ. Eng. Manag. J. 18:1439-56.
Ramesh M. 2016. Kenaf (Hibiscus cannabinus L.) fibre based biomaterials: a review on processing and properties. Prog. Mater. Sci. 11:001.
Reif M., Zach J., Hroudová J. 2016. Studying the properties of particulate insulating materials on natural basis. Procedia Engine. 07:390.
Rivera-Gómez R., Galán-Marín C. 2017. Biodegradable fiber-reinforced polymer composites for construction applications. In: A.K.-t. Lau, A.P.-Y. Hung (Eds.), Natural fiber-reinforced biodegradable and bioresorbable polymer composites. Woodhead Publishing, Sawston, UK, pp. 51-72.
Rivera-Gómez C., Galán-Marín C., Bradley F. 2014. Analysis of the influence of the fiber type in polymer matrix/fiber bond using natural organic polymer stabilizer. Polymers (Basel). 6:977-4.
Salih M.M., Osofero A.I., Imbabi M.S. 2020. Critical review of recent development in fiber reinforced adobe bricks for sustainable construction. Front. Struct. Civ. Eng. 14:839-54.
Sangma S., Tripura D.D. 2020. Experimental study on shrinkage behaviour of earth walling materials with fibers and stabilizer for cob building. Constr. Build. Mater. 256:119449.
Saxena, K.L., Sewak, R., 2016. Livestock waste and its impact on human health 6, 1084–1099.
Serrano S., Barreneche C., Cabeza L.F. 2016. Use of by-products as additives in adobe bricks: Mechanical properties characterisation. Constr. Build. Mater. 108:105-11.
Statuto D., Sica C., Picuno P. 2018. Experimental development of clay bricks reinforced with agricultural by-products. Sustainable Farming-SFARM View project Mediterranean technology led incubator co-operation-MEDI-CUBE View project.
Sutcu M., Ozturk S., Yalamac E., Gencel O. 2016. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method. J. Environ. Manage. 181:185-92.
Turco C., Paula Junior A.C., Teixeira E.R., Mateus R. 2021. Optimisation of compressed earth blocks (CEBs) using natural origin materials: a systematic literature review. Constr. Build. Mater. 309:125140.
Vasilca I.-S., Nen M., Chivu O., Radu V., Simion C.-P., Marinescu N. 2021. The management of environmental resources in the construction sector: an empirical model. Energies 14:2489.
Vatani Oskouei A., Afzali M., Madadipour M. 2017. Experimental investigation on mud bricks reinforced with natural additives under compressive and tensile tests. Constr. Build. Mater. 142:137-47.
Vega P., Juan A., Ignacio Guerra M., Morán J.M., Aguado P.J., Llamas B. 2011. Mechanical characterisation of traditional adobes from the north of Spain. Constr. Build. Mater. 02:003.
Volhard F. 2009. Lehmbau Regeln: Begriffe, Baustoffe, Bauteile/Verfasser: Franz Volhard, Ulrich Röhlen; Dachverband Lehm e.V. (Hrsg.). No Title.

How to Cite

Parlato, M. C. M., Rivera-Gómez, C. . and Porto, S. M. C. (2023) “Reuse of livestock waste for the reinforcement of rammed-earth materials: investigation on mechanical performances”, Journal of Agricultural Engineering, 54(2). doi: 10.4081/jae.2023.1434.

Similar Articles

<< < 34 35 36 37 38 39 40 41 42 43 > >> 

You may also start an advanced similarity search for this article.