Design of a five-bar duckbill-type mechanism for sorghum transplanting

Published: 1 August 2023
Abstract Views: 1253
PDF: 485
HTML: 162
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Sorghum seedling transplanting is an essential agricultural activity in Sub-Saharan Africa. However, conventional manual transplanting of sorghum is a time-consuming, labour-intensive, costly activity with a low transplanting rate, uneven plant distribution, and low degree of accuracy. In order to realize rapid and precise sorghum seedlings transplanting, a duckbill-type mechanism has been designed. This mechanism is a five-bar linkage consisting of two crankshafts, two connecting rods, and a duckbillshaped planter to improve the quality of transplanting operations. The study includes kinematic and synthesis analysis through MATLAB software, parts design, and motion analysis using SolidWorks software. After synthesis analysis using a genetic algorithm, the optimal length between the two cranks is 300 mm, the length of the upper crankshaft is 106 mm, the length of the connecting rod I is 169 mm, the length of the connecting rod II is 222 mm, and the length of the lower crankshaft is 67 mm. Furthermore, the speed and acceleration analysis show that the seedlings are planted with zero-speed operation to obtain a high perpendicularity qualification. The results show that the proposed planting mechanism meets the agronomic requirements of transplanted sorghum with a good transplanting rate.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Basga S.D., Temga J.P., Tsozué D., Danbé N., Nguetnkam J.P. 2018. Morphological, mineralogical and geochemical features of topomorphic vertisols used for sorghum production in North Cameroon. Eurasian J. Soil Sci. 7:346-54. DOI: https://doi.org/10.18393/ejss.460841
Cervantes-Culebro H., Chong-Quero J.E., Padilla-García E.A., Cruz-Villar C.A. 2021. Concurrent design of a 2 dof five-bar parallel robot a hybrid design of rigid and flexible links. IEEE Access. 9:17450-62. DOI: https://doi.org/10.1109/ACCESS.2021.3053250
Chantereau J., Cruz J.F., Ratnadass A., Trouche G. 2013. Le sorgho. Ed. Quæ, Versailles, France. DOI: https://doi.org/10.35690/978-2-7592-2062-5
Connor A.M. 1996. Synthesis of hybrid mechanisms using genetic algorithms. Degree diss., University of John Moores, Liverpool, UK.
Davis L. 1991. Handbook of genetic algorithms. Van Nostrand Reinhold, New York, NY, USA.
FAO. 2019. Crops statistics. Food and Agriculture Organization, Rome, Italy. Available from: http://www.fao.org/faostat/en/#data/QCL Accessed: 20 July 2021.
Goldberg D.E. 1989. Genetic algorithms in search optimization and machine learning. Addison-Wesley, New York, NY, USA.
Hongzhen X., Haobo J., Jiaodi L., Zhenhua N., 2022. Reverse design and analysis of gear five-bar planting mechanism based on agronomic requirement. Pak. J. Agric. Sci. 59:329-37.
Iqbal M.Z., Islam M.N., Chowdhury M., Islam S., Park T., Kim Y. J., Chung S.O. 2021. Working speed analysis of the gear-driven dibbling mechanism of a 2.6 kW walking-type automatic pepper transplanter. Machines. 9:1-16. DOI: https://doi.org/10.3390/machines9010006
Ji J., Cheng Q., Jin X., Zhang Z., Xie X., Li M. 2020. Design and test of 2ZLX-2 transplanting machine for oil peony. Int. J. Agric. Biol. Eng. 13:61-9. DOI: https://doi.org/10.25165/j.ijabe.20201304.5695
Jiang L., San H., Ma S. 2014. Dimensions design of planar five-bar linkage transplanting mechanism for transplanter. Appl. Mech. Mat. 475:1387-90. DOI: https://doi.org/10.4028/www.scientific.net/AMM.475-476.1387
Jiaodi L., Weibin C., Dongyang T., Haiyang T., Hongzheng Z. 2016. Kinematic analysis and experiment of planetary five-bar planting mechanism for zero-speed transplanting on mulch film. Int. J Agric. Biol. Eng. 9:84-91.
Jin X., Cheng Q., Zhao B., Ji J., Li M. 2020. Design and test of 2ZYM-2 potted vegetable seedlings transplanting machine. Int. J. Agric. Biol. Eng. 13:101-10. DOI: https://doi.org/10.25165/j.ijabe.20201301.5494
Khadatkar A., Mathur S.M., Gaikwad B.B. 2018. Automation in transplanting: a smart way of vegetable cultivation. Curr. Sci. 115:1884-92. DOI: https://doi.org/10.18520/cs/v115/i10/1884-1892
Liu X., Ding J., Wang C. 2022. Design framework for motion generation of planar four-bar linkage considering clearance joints and dynamics performance. Machines. 10:1-18. DOI: https://doi.org/10.3390/machines10020136
Liu D., Gong Y., Zhang X., Chen X., Wang G., Zhang X. 2022. Design and experiment of dry-farming cantaloupe transplanter under water. Agriculture 12:796. DOI: https://doi.org/10.3390/agriculture12060796
Mathieu B. 2002. Transplanted sorghum in North Cameroon: developing farmers’ know-how and organizing the sector. pp. 161-180 in “Recessional sorghum cultivation in West and Central Africa: current situation and definition of a regional action plan”. AECI/FAO, Madrid, Spain.
Michalewicz Z. 1992. Genetic algorithms+data structures = evolution programs. Springer, New York, NY, USA. DOI: https://doi.org/10.1007/978-3-662-02830-8
Mundia C.W., Secchi S., Akamani K., Wang G. 2019. A regional comparison of factors affecting global sorghum production: the case of North America, Asia and Africa’s Sahel. Sustainability. 11:1-18. DOI: https://doi.org/10.3390/su11072135
Nenwala P.A.V., Moussa S., Tchobsala, Delphine D.N., Adamou I., Bernard D.D., Oumar O.M. 2022. Evaluation of traditional know-how for the cultivation of Muskuwaari transplanted sorghum in a context of climate change (Mayo-Danay and Mayo-Kani, Far North Cameroon). Asian J. Res. Agric. For. 8:15-29. DOI: https://doi.org/10.9734/ajraf/2022/v8i430161
Oumarou Y., Saidou A., Madi A., Yieta W.F., Yemeta F.O. 2017. Farmer’s perception of rainfall disturbances and adaptation strategies in transplanted sorghum cropping systems in the
Sudano-Sahelian zone of Cameroon. Afr. Sci. 13:50-65.
Sang N.D., Matsuuura D., Sugahara Y., Takeda Y. 2018. Kinematic design of five-bar parallel robot by kinematically defined performance index for energy consumption. In: B. Corves, P. Wenger, M. Husing (Eds.), EuCoMeS 2018, Mechanisms and machine science. Germany, pp. 239-247. DOI: https://doi.org/10.1007/978-3-319-98020-1_28
Shao Y., Liu Y., Xuan G., Hu Z., Han X., Wang Y. 2019. Design and test of multifunctional vegetable transplanting machine. pp. 92-97 in The 6th IFAC Conf.; Australia. DOI: https://doi.org/10.1016/j.ifacol.2019.12.503
Sun K., Ge K., Li T., Wang J. 2019. Design and analysis of vegetable transplanter based on five-bar mechanism. In 5th IOP Conf. Ser.: Mater. Sci. Eng. China. DOI: https://doi.org/10.1088/1757-899X/692/1/012029
Sun W., Simionescu P.A. 2020. Parameter analysis and field tests of a double crank multi-rod under plastic-film hill-drop mechanism potato planter. Am. J. Potato Res. 97:256-64. DOI: https://doi.org/10.1007/s12230-020-09773-5
Tsusaka T.W., Otsuka K. 2013. The changes in the effects of temperature and rainfall on cereal crop yields in Sub-Saharan Africa: a country level panel data study 1989 to 2004. Env. Eco. 4:70-80.
Wright A. 1991. Genetic algorithms for real parameter optimization. In: G.J.E. Rawlin (Ed.), Foundations of genetic algorithms. Morgan Kaufmann, San Mateo, pp. 205-218. DOI: https://doi.org/10.1016/B978-0-08-050684-5.50016-1
Zhang J., Niu Z., Li T., Hou J., Wu Y., Xi R., Li Y., Li G., Hou J. 2020. Design and optimization of planting process parameters for 2ZYX-2 type green onion ditching and transplanting machine. Phyton. 89:147-66. DOI: https://doi.org/10.32604/phyton.2020.08479

How to Cite

Timene, A. and Djalo, H. (2023) “Design of a five-bar duckbill-type mechanism for sorghum transplanting”, Journal of Agricultural Engineering, 54(2). doi: 10.4081/jae.2023.1473.

Similar Articles

<< < 36 37 38 39 40 41 42 > >> 

You may also start an advanced similarity search for this article.