A leaf-mounted capacitance sensor for continuous monitoring of foliar transpiration and solar irradiance as an indicator of plant water status

Published: 3 November 2022
Abstract Views: 2274
PDF: 800
HTML: 129
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

A leaf-mounted sensor is described which detects condensing water vapour originating from leaf transpiration, taking advantage of a passive temperature gradient across the sunlit leaf and the underneath sensor plate, and simultaneously monitors incident solar radiation. The simple and low-cost device enables the qualitative assessment of plant water status by comparing the diurnal patterns of leaf transpiration and solar irradiance. A close correlation between condensation and irradiance occurs in conditions of unrestricted water supply, whereas a deviation of their course likely indicates a suboptimal plant water status.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Afzal A., Duiker S.W., Watson J.E., Luthe D. 2017. Leaf thickness and electrical capacitance as measures of plant water status. Trans. ASABE 60:1063–74. DOI: https://doi.org/10.13031/trans.12083
Allen R.G., Pereira L.S., Raes D., Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome.
Barbosa J.A., Freitas V.M.S., Vidotto L.H.B., Schleder G.R., De Oliveira R.A.G., Da Rocha J.F., Kubota L.T., Vieira L.C.S., Tolentino H.C.N., Neckel I.T., Gobbi A.L., Santhiago M., Lima R.S. 2022. Biocompatible Wearable Electrodes on Leaves toward the On-Site Monitoring of Water Loss from Plants. ACS Appl. Mater. Inter. DOI: https://doi.org/10.1021/acsami.2c02943
Ben-Gal A., Ron Y., Yermiyahu U., Zipori I., Naoum S., Dag A. 2021. Evaluation of regulated deficit irrigation strategies for oil olives: A case study for two modern Israeli cultivars. Agr. Water Manage. 245:106577. DOI: https://doi.org/10.1016/j.agwat.2020.106577
Buckley T.N. 2019. How do stomata respond to water status? New Phytol. 224:21–36. DOI: https://doi.org/10.1111/nph.15899
Cahn M.D., Johnson L.F. 2017. New approaches to irrigation scheduling of vegetables. Horticulturae 3:28. DOI: https://doi.org/10.3390/horticulturae3020028
Chaves M.M., Zarrouk O., Francisco R., Costa J.M., Santos T., Regalado A.P., Rodrigues M.L., Lopes C.M. 2010. Grapevine under deficit irrigation: hints from physiological and molecular data. Ann. Bot. 105:661–76. DOI: https://doi.org/10.1093/aob/mcq030
Chen T., Bowler N. 2013. Design of interdigital spiral and concentric capacitive sensors for materials evaluation. AIP Conf. Proc. 1511:1593–1600. DOI: https://doi.org/10.1063/1.4789232
Fernández V., Sotiropoulus T., Brown P. 2013. Foliar Fertilization: Scientific Principles and Field Practices. International fertilizer industry association.
Fernández J.E. 2017. Plant-based methods for irrigation scheduling of woody crops. Horticulturae 3:35. DOI: https://doi.org/10.3390/horticulturae3020035
Gruber B.R., Schultz H.R. 2005. Coupling of plant to soil water status at different vineyard sites. Acta Hortic. 689:381–89. DOI: https://doi.org/10.17660/ActaHortic.2005.689.45
Jones H.G. 2004. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 55:2427–36. DOI: https://doi.org/10.1093/jxb/erh213
Jones H.G. 2008. Irrigation Scheduling - Comparison of soil, plant and atmosphere monitoring approaches. Acta Hortic. 792:391–403. DOI: https://doi.org/10.17660/ActaHortic.2008.792.46
Jones H.G., Higgs K.H. 1979. Water potential-water content relationships in apple leaves. J. Exp. Bot. 30:965–70. DOI: https://doi.org/10.1093/jxb/30.5.965
Kostaki K.I., Coupel-Ledru A., Bonnell V.C., Gustavsson M., Sun P., McLaughlin F.J., Fraser D.P., McLachlan D.H., Hetherington A.M., Dodd A.N., Franklin K.A. 2020. Guard cells integrate light and temperature signals to control stomatal aperture. Plant Physiol. 182:1404–19. DOI: https://doi.org/10.1104/pp.19.01528
Lan L., Le X., Dong H., Xie J., Ying Y., Ping J. 2020. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens. Bioelectron. 165:112360. DOI: https://doi.org/10.1016/j.bios.2020.112360
Levin A., Nackley L. 2021. Principles and Practices of Plant-based Irrigation Management. Horttechnology 31:650–60. DOI: https://doi.org/10.21273/HORTTECH04862-21
Limm E.B., Simonin K.A., Bothman A.G., Dawson T.E. 2009. Foliar water uptake: A common water acquisition strategy for plants of the redwood forest. Oecologia 161:449–59. DOI: https://doi.org/10.1007/s00442-009-1400-3
Lloret J., Sendra S., Garcia L., Jimenez J.M. 2021. A wireless sensor network deployment for soil moisture monitoring in precision agriculture. Sensors 21:7243. DOI: https://doi.org/10.3390/s21217243
Lo Bianco R. 2019. Water-related variables for predicting yield of apple under deficit irrigation. Horticulturae 5:8. DOI: https://doi.org/10.3390/horticulturae5010008
McBurney T. 1992. The relationship between leaf thickness and plant water potential. J. Exp. Bot. 43:327–35. DOI: https://doi.org/10.1093/jxb/43.3.327
Miner G.L., Ham J.M., Kluitenberg G.J. 2017. A heat-pulse method for measuring sap flow in corn and sunflower using 3D-printed sensor bodies and low-cost electronics. Agric. For. Meteorol. 246:86–97. DOI: https://doi.org/10.1016/j.agrformet.2017.06.012
Moreshet S., Yocum C.S. 1972. A Condensation Type Porometer for Field Use. Plant Physiol. 49:944–49. DOI: https://doi.org/10.1104/pp.49.6.944
Mossad A., Scalisi A., Lo Bianco R. 2018. Growth and water relations of field-grown ‘Valencia’ orange trees under long-term partial rootzone drying. Irrig. Sci. 36:9–24. DOI: https://doi.org/10.1007/s00271-017-0562-8
Nethercott J. 2014. Capacitance measurement with the Arduino Uno. Available from: https://wordpress.codewrite.co.uk/pic/2014/01/21/cap-meter-with-arduino-uno/
Pearcy R.W., Schulze E., Zimmermann R. 2000. Measurement of transpiration and leaf conductance. In: Pearcy et al. (Ed.) Plant Physiological Ecology. Springer, Dordrecht, pp. 137-160. DOI: https://doi.org/10.1007/978-94-010-9013-1_8
Scalisi A. 2018. Continuous determination of fruit tree water-status by plant-based sensors. Italus Hortus 24:39–50. DOI: https://doi.org/10.26353/j.itahort/2017.2.3950
Scanlon B.R., Andraski B.J., Bilskie J. 2002. Miscellaneous methods for measuring matric or water potential. In: J.H. Dane, G.C. Topp (Ed.) Methods of soil analysis. Part 4. SSSA Book Ser. 5, SSSA, Madison, WI, USA, pp. 643–70 DOI: https://doi.org/10.2136/sssabookser5.4.c23
Shackel K. 2011. A plant-based approach to deficit irrigation in trees and vines. HortScience 46:173–77. DOI: https://doi.org/10.21273/HORTSCI.46.2.173
Steuer B., Stuhlfauth T., Fock H.P. 1988. The efficiency of water use in water stressed plants is increased due to ABA induced stomatal closure. Photosynth. Res. 18, 327-36. DOI: https://doi.org/10.1007/BF00034837
Vishay Semiconductors. 2022. Technical Data Sheet for BPW34, Rev.01/01/2022. Available from: https://www.vishay.com/docs/81521/bpw34.pdf
Wilson T.G., Kustas W.P., Alfieri J.G., Anderson M.C., Gao F., Prueger J.H., McKee L.G., Alsina M.M., Sanchez L.A., Alstad K.P. 2020. Relationships between soil water content, evapotranspiration, and irrigation measurements in a California drip-irrigated Pinot noir vineyard. Agr. Water Manage. 237:106186. DOI: https://doi.org/10.1016/j.agwat.2020.106186
Yin S., Ibrahim H., Schnable P.S., Castellano M.J., Dong L. 2021. A Field-Deployable, Wearable Leaf Sensor for Continuous Monitoring of Vapor-Pressure Deficit. Adv. Mater. Technol. 6:2001246. DOI: https://doi.org/10.1002/admt.202001246

How to Cite

Thalheimer, M. (2022) “A leaf-mounted capacitance sensor for continuous monitoring of foliar transpiration and solar irradiance as an indicator of plant water status”, Journal of Agricultural Engineering, 54(1). doi: 10.4081/jae.2022.1477.

Similar Articles

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.