Should extra virgin olive oil production change the approach? A systematic review of challenges and opportunities to increase sustainability, productivity, and product quality

Published: 22 March 2023
Abstract Views: 1339
PDF: 709
HTML: 102
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Extra virgin olive oil is constantly gaining interest for its outstanding health and nutritional properties. However, the production process generates roughly four times more waste than the quantity of oil. For this reason, improvements in extra virgin olive oil production and in the valorisation of olive mill by-products are urgently needed, thus motivating this work. The first aim of this review is to summarise current knowledge regarding machines, plants, and processes in extra virgin olive oil production. The second aim is to suggest specific innovations and improvement strategies to increase sustainability, productivity, profitability, and quality. This review clearly highlighted the copious advantages of modern production plants, which can control oxidation processes, avoid temperature increases, and significantly improve the quality of extra virgin olive oil. However, the production chain must face the monumental environmental sustainability challenge. In this direction, this review highlighted that scientific and technological research has made great strides in managing olive mill by-products, suggesting several strategies related to the recovery of polyphenols and applications in agriculture, feed, and food. However, to succeed in this ambitious project, harmonious teamwork between European policies, states, regions, and private companies is needed.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Amirante P. 2018. Dalle olive all'olio: evoluzione delle tecnologie. Available from: https://www.researchgate.net/publication/323078812_DALLE_OLIVE_ALL%27OLIO_EVOLUZIONE_DELLE_TECNOLOGIE.
Bakhouche A., Lozano-Sánchez J., Ballus C.A., Bendini A., Gallina-Toschi T., Fernández-Gutiérrez A., Segura-Carretero A. 2014. A new extraction approach to correct the effect of the apparent increase in secoiridoid content after filtration of virgin olive oil. Talanta. 127:18-25. DOI: https://doi.org/10.1016/j.talanta.2014.03.077
Balli D., Cecchi L., Innocenti M., Bellumori M., Mulinacci, N. 2021. Food by-products valorisation: grape pomace and olive pomace (pâté) as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chem. 355:129642. DOI: https://doi.org/10.1016/j.foodchem.2021.129642
Banias G., Achillas C., Vlachokostas C., Moussiopoulos N., Stefanou M. 2017. Environmental impacts in the life cycle of olive oil: a literature review. J. Sci. Food. Agric. 97:1686-97. DOI: https://doi.org/10.1002/jsfa.8143
Bazzarelli F., Piacentini E., Poerio T., Mazzei R., Cassano A., Giorno L. 2016. Advances in membrane operations for water purification and biophenols recovery/valorization from OMWWs. J. Membrane. Sci. 497:402-9. DOI: https://doi.org/10.1016/j.memsci.2015.09.049
Barone and Di Marco. Fiorno P. (ed). 2007. Caratteristiche generali della pianta. Olea trattato di olivicoltura, Bologna, Edagricole, 2007, pag 14. Available from: https://www.edagricole.it/wp-content/uploads/2020/03/4938-Olea-SFOGLIA.pdf.
Bolek S. 2020. Olive stone powder: a potential source of fiber and antioxidant and its effect on the rheological characteristics of the biscuit dough and quality. Innov. Food. Sci. Emerg. Technol. 64:102423. DOI: https://doi.org/10.1016/j.ifset.2020.102423
Borjan D., Leitgeb M., Knez Ž., Hrnčič M. K. 2020. Microbiological and antioxidant activity of phenolic compounds in olive leaf extract. Molecules. 25:5946. DOI: https://doi.org/10.3390/molecules25245946
Bottino A., Capannelli G., Comite A., Ferrari F., Marotta F., Mattei A., Turchini A. 2004. Application of membrane processes for the filtration of extra virgin olive oil. J. Food. Eng. 65:303-9. DOI: https://doi.org/10.1016/j.jfoodeng.2004.01.023
Bubola K.B., Lukić M., Mofardin I., Butumović A., Koprivnjak O. 2017. Filtered vs. naturally sedimented and decanted virgin olive oil during storage: effect on quality and composition. LWT – Food. Sci. Technol. 84:370-7. DOI: https://doi.org/10.1016/j.lwt.2017.05.069
Calabriso N., Scoditti E., Pellegrino M., Carluccio M.A. 2015. Olive oil. In The Mediterranean Diet (pp. 135-142). London, UK: Academic Press. DOI: https://doi.org/10.1016/B978-0-12-407849-9.00013-0
Caponio F., Gomes T., Summo C., Pasqualone A. 2003. Influence of the type of olive-crusher used on the quality of extra virgin olive oils. Eur. J. Lipid. Sci. Tech. 105:201-6. DOI: https://doi.org/10.1002/ejlt.200390041
Cappelli A., Menditto N., Cini E. 2021. Innovative olive tree leaves shredder prototype for the valorization of wasted leaves: an application to high-quality compost production. Sustainability. 13:9421 DOI: https://doi.org/10.3390/su13169421
Cappelli A., Parretti C., Cini E., Citti P. 2019. Development of a new washing machine in olive oil extraction plant: A first application of usability-based approach. J. Agric. Eng. 50:134-42. DOI: https://doi.org/10.4081/jae.2019.949
Catania P., Vallone M., Farid A., De Pasquale C. 2016. Effect of O2 control and monitoring on the nutraceutical properties of extra virgin olive oils. J. Food. Eng. 169:179-88. DOI: https://doi.org/10.1016/j.jfoodeng.2015.08.009
Cerrone F., Barghini P., Pesciaroli C., Fenice M. 2011. Efficient removal of pollutants from olive washing wastewater in bubble-column bioreactor by Trametes versicolor. Chemosphere. 84:254-9. DOI: https://doi.org/10.1016/j.chemosphere.2011.03.066
Cifuentes-Cabezas M., Carbonell-Alcaina C., Vincent-Vela M.C., Mendoza-Roca J.A., Álvarez-Blanco S. 2021. Comparison of different ultrafiltration membranes as first step for the recovery of phenolic compounds from olive-oil washing wastewater. Process. Saf. Environ. Protection. 149:724-34. DOI: https://doi.org/10.1016/j.psep.2021.03.035
Clodoveo M.L., Camposeo S., Amirante R., Dugo G., Cicero N., Boskou D. 2015. Research and innovative approaches to obtain virgin olive oils with a higher level of bioactive constituents. In: Boskou D. (ed). Olive and Olive Oil Bioactive Constituents. Urbana, Illinois: AOCS Press. pp.179-215. DOI: https://doi.org/10.1016/B978-1-63067-041-2.50013-6
Clodoveo M.L., Durante V., La Notte D. 2013. Working towards the development of innovative ultrasound equipment for the extraction of virgin olive oil. Ultrason. Sonochem. 20:1261-70. DOI: https://doi.org/10.1016/j.ultsonch.2013.02.001
Di Giovacchino L. 2013. Chapter 3: technological aspects. In: Aparicio R., Harwood J (eds). Handbook of olive oil: analysis and properties. Boston, MA: Springer. pp. 86-9. DOI: https://doi.org/10.1007/978-1-4614-7777-8_3
Di Giovacchino L., Sestili S., Di Vincenzo D. 2002. Influence of olive processing on virgin olive oil quality. Eur. J. Lipid Sci. Tech. 104:587-601. DOI: https://doi.org/10.1002/1438-9312(200210)104:9/10<587::AID-EJLT587>3.0.CO;2-M
Espadas-Aldana G., Vialle C., Belaud J.P., Vaca-Garcia C., Sablayrolles C. 2019. Analysis and trends for life cycle assessment of olive oil production. Sustainable Prod. Consump. 19:216-30. DOI: https://doi.org/10.1016/j.spc.2019.04.003
European Commission. 2020. Olive oil: an overview of the production and marketing of olive oil in the EU. 2020. Available online: https://ec.europa.eu/info/food-farming-fisheries/plants-and-plant-products/plant-products/olive-oil
Flamminii F., Di Mattia C.D., Nardella M., Chiarini M., Valbonetti L., Neri L., Pittia P. 2020. Structuring alginate beads with different biopolymers for the development of functional ingredients loaded with olive leaves phenolic extract. Food. Hydrocolloids. 108:105849. DOI: https://doi.org/10.1016/j.foodhyd.2020.105849
Guerrini L., Masella P., Migliorini M., Cherubini C., Parenti A. 2015. Addition of a steel pre-filter to improve plate filter-press performance in olive oil filtration. J. Food. Eng. 157:84-7. DOI: https://doi.org/10.1016/j.jfoodeng.2015.02.025
Guerrini L., Migliorini M., Giusti M., Parenti A. 2017. The influence of crusher speed on extra virgin olive oil characteristics. Eur. J. Lipid. Sci. Tech. 119:1600156. DOI: https://doi.org/10.1002/ejlt.201600156
Herrero-Encinas J., Blanch M., Pastor J.J., Mereu A., Ipharraguerre I.R., Menoyo D. 2020. Effects of a bioactive olive pomace extract from Olea europaea on growth performance, gut function, and intestinal microbiota in broiler chickens. Poultry. Sci. 99:2-10. DOI: https://doi.org/10.3382/ps/pez467
Lacolla G., Rinaldi M., Savino M., Russo M., Caranfa D., Cucci G. 2021. Effects of organic fertilization from wet olive pomace on emmer wheat (Triticum dicoccum Shrank) grain yield and composition. J. Cereal. Sci. 102:103369. DOI: https://doi.org/10.1016/j.jcs.2021.103369
Ioannou-Ttofa L., Michael-Kordatou I., Fattas S. C., Eusebio A., Ribeiro B., Rusan M., Amer A.R.B., Zuraiqi S., Waismand M. Linder C. Wiesman Z., Gilron J.,Fatta-Kassinos D. 2017. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater. Water. Res. 114:1-13. DOI: https://doi.org/10.1016/j.watres.2017.02.020
Leone A., Romaniello R., Tamborrino A., Xu X.Q., Juliano P. 2017. Microwave and megasonics combined technology for a continuous olive oil process with enhanced extractability. Innov. Food Sci. Emerg. Technol. 42:56-63. DOI: https://doi.org/10.1016/j.ifset.2017.06.001
Leone A., Tamborrino A., Romaniello R., Zagaria R., Sabella E. 2014. Specification and implementation of a continuous microwave-assisted system for paste malaxation in an olive oil extraction plant. Biosyst. Eng. 125:24-35. DOI: https://doi.org/10.1016/j.biosystemseng.2014.06.017
Lombardo N. 2007. Parte prima: Aspetti generali dell’olivicoltura. In: Fiorino P. Olea trattato di olivicoltura. Bologna: Edagricole. p. 3.
Losito I., Abbattista R., De Ceglie C., Castellaneta A., Calvano C.D., Cataldi T.R. 2021. Bioactive secoiridoids in italian extra-virgin olive oils: impact of olive plant cultivars, cultivation regions and processing. Molecules. 26:743. DOI: https://doi.org/10.3390/molecules26030743
Lozano-Sánchez J., Cerretani L., Bendini A., Segura-Carretero A., Fernández Gutiérrez A. 2010. Filtration process of extra virgin olive oil: effect on minor components, oxidative stability and sensorial and physicochemical characteristics. Trends. Food. Sci. Tech. 21:201-11. DOI: https://doi.org/10.1016/j.tifs.2009.12.004
Masella P., Parenti A., Spugnoli P., Calamai L. 2012. Vertical centrifugation of virgin olive oil under inert gas. Eur. J. Lipid. Sci. Tech. 114:1094-6. DOI: https://doi.org/10.1002/ejlt.201100400
Maza-Márquez P., González-Martínez A., Rodelas B., González-López J. 2017. Full-scale photobioreactor for biotreatment of olive washing water: structure and diversity of the microalgae-bacteria consortium. Bioresource Technol. 238:389-98. DOI: https://doi.org/10.1016/j.biortech.2017.04.048
Moher D., Liberati A., Tetzlaff J., Altman D.G. 2009. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 151:264–9. DOI: https://doi.org/10.7326/0003-4819-151-4-200908180-00135
Morrone L., Pupillo S., Neri L., Bertazza G., Magli M., Rotondi A. 2017. Influence of olive ripening degree and crusher typology on chemical and sensory characteristics of Correggiolo virgin olive oil. J. Sci. Food. Agr. 97:1443-50. DOI: https://doi.org/10.1002/jsfa.7883
Moudache M., Colon M., Nerín C., Zaidi F. 2016. Phenolic content and antioxidant activity of olive by-products and antioxidant film containing olive leaf extract. Food Chem. 212:521-7. DOI: https://doi.org/10.1016/j.foodchem.2016.06.001
Ochando-Pulido J.M., Corpas-Martínez J.R., Martinez-Ferez A. 2018. About two-phase olive oil washing wastewater simultaneous phenols recovery and treatment by nanofiltration. Process Saf. Environ. Protection. 114:159-68. DOI: https://doi.org/10.1016/j.psep.2017.12.005
Ochando-Pulido J.M., Stoller M., Bravi M., Martinez-Ferez A., Chianese A. 2012. Batch membrane treatment of olive vegetation wastewater from two-phase olive oil production process by threshold flux based methods. Sep. Purif. Technol. 101:34-41. DOI: https://doi.org/10.1016/j.seppur.2012.09.015
Parenti A., Masella P., Guerrini L., Guiso A., Spugnoli P. 2014. Energetic and economic viability of olive stone recovery as a renewable energy source: a Southern Italy case study. JAE. 45:60-3. DOI: https://doi.org/10.4081/jae.2014.230
Parenti A., Spugnoli P., Masella P., Calamai L. 2008. The effect of malaxation temperature on the virgin olive oil phenolic profile under laboratory‐scale conditions. Eur. J. Lipid. Sci. Tech. 110:735-41. DOI: https://doi.org/10.1002/ejlt.200700307
Pastore G., D'Aloise A., Lucchetti S., Maldini M., Moneta E., Peparaio M., Raffo A., Sinesio, F. 2014. Effect of oxygen reduction during malaxation on the quality of extra virgin olive oil (Cv. Carboncella) extracted through “two-phase” and “three-phase” centrifugal decanters. LWT –Food. Sci. Technol. 59:163-72. DOI: https://doi.org/10.1016/j.lwt.2014.04.053
Patsios S.I., Kontogiannopoulos K.N., Banias G.F. 2020. Environmental impact assessment in agri-production: a comparative study of olive oil production in two European countries. In: Bio-Economy and Agri-Production. London, UK: Academic Press. pp. 83-116. DOI: https://doi.org/10.1016/B978-0-12-819774-5.00005-9
Puértolas E., de Marañón I.M. 2015. Olive oil pilot-production assisted by pulsed electric field: Impact on extraction yield, chemical parameters and sensory properties. Food. Chem. 167:497-502. DOI: https://doi.org/10.1016/j.foodchem.2014.07.029
Pulido J.M.O. 2016. A review on the use of membrane technology and fouling control for olive mill wastewater treatment. Sci. Total. Environ. 563:664-75. DOI: https://doi.org/10.1016/j.scitotenv.2015.09.151
Putnik P., Barba F.J., Španić I., Zorić Z., Dragović-Uzelac V., Kovačević D.B. 2017. Green extraction approach for the recovery of polyphenols from Croatian olive leaves (Olea europea). Food. Bioprod. Process. 106:19-28. DOI: https://doi.org/10.1016/j.fbp.2017.08.004
Rapoport H.F., Fabbri A., Sebastiani L. 2016. Olive biology. Olive Tree Genome. 13-25. DOI: https://doi.org/10.1007/978-3-319-48887-5_2
Reboredo-Rodríguez P., González-Barreiro C., Cancho-Grande B., Simal-Gándara J. 2014. Improvements in the malaxation process to enhance the aroma quality of extra virgin olive oils. Food. Chem. 158:534-45. DOI: https://doi.org/10.1016/j.foodchem.2014.02.140
Rebufa C., Pinatel C., Artaud J., Girard F. 2021. A comparative study of the main international extra virgin olive oil competitions: their impact on producers and consumers. Trends. Food. Sci. Technol. 107:445-54. DOI: https://doi.org/10.1016/j.tifs.2020.11.014
Ribeiro T. B., Bonifácio-Lopes T., Morais P., Miranda A., Nunes J., Vicente A.A., Pintado M. 2021. Incorporation of olive pomace ingredients into yoghurts as a source of fibre and hydroxytyrosol: Antioxidant activity and stability throughout gastrointestinal digestion. J. Food. Eng. 297:110476. DOI: https://doi.org/10.1016/j.jfoodeng.2021.110476
Rodríguez G., Lama A., Rodríguez R., Jiménez A., Guillén R., Fernández-Bolanos J. 2008. Olive stone an attractive source of bioactive and valuable compounds. Bioresource. Technol. 99: 5261-9. DOI: https://doi.org/10.1016/j.biortech.2007.11.027
Romani A., Ieri F., Urciuoli S., Noce A., Marrone G., Nediani C., Bernini R. 2019. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients, 11:1776. DOI: https://doi.org/10.3390/nu11081776
Salomone R., Ioppolo G. 2012. Environmental impacts of olive oil production: a life cycle assessment case study in the province of Messina (Sicily). J. Clean. Prod. 28:88-100. DOI: https://doi.org/10.1016/j.jclepro.2011.10.004
Seçmeler Ö., Galanakis C.M. 2019. Olive fruit and olive oil. In: Galanakis C. Innovations in Traditional Foods. Swaston, UK: Woodhead Publishing. pp. 193-220. DOI: https://doi.org/10.1016/B978-0-12-814887-7.00008-3
Simonato B., Trevisan S., Tolve R., Favati F., Pasini G. 2019. Pasta fortification with olive pomace: effects on the technological characteristics and nutritional properties. LWT – Food. Sci. Technol. 114:108368. DOI: https://doi.org/10.1016/j.lwt.2019.108368
Souilem S., El-Abbassi A., Kiai H., Hafidi A., Sayadi S., Galanakis C.M. 2017. Olive oil production sector: environmental effects and sustainability challenges. In: Galanakis C.M. Olive mill waste. London, UK: Academic Press. pp. 1-28. DOI: https://doi.org/10.1016/B978-0-12-805314-0.00001-7
Talhaoui N., Taamalli A., Gómez-Caravaca A.M., Fernández-Gutiérrez A., SeguraCarretero A. 2015. Phenolic compounds in olive leaves: analytical determination, biotic and abiotic influence, and health benefits. Food. Res. Int. 77:92-108. DOI: https://doi.org/10.1016/j.foodres.2015.09.011
Tamborrino A., Clodoveo M.L., Leone A., Amirante P., Paice A.G. 2010. The malaxation process: influence on olive oil quality and the effect of the control of oxygen concentration in virgin olive oil. In: Olives and olive oil in health and disease prevention. London, UK: Academic Press. (pp. 77-83). Available from: https://www.uniba.it/it/docenti/clodoveo-maria-lisa/malaxationoxygen.pdf DOI: https://doi.org/10.1016/B978-0-12-374420-3.00009-7
Tamborrino A., Pati S., Romaniello R., Quinto M., Zagaria R., Leone A. 2014. Design and implementation of an automatically controlled malaxer pilot plant equipped with an in-line oxygen injection system into the olive paste. J. Food. Eng.141:1-12. DOI: https://doi.org/10.1016/j.jfoodeng.2014.05.002
Tamborrino A., Veneziani G., Romaniello R., Perone C., Urbani S., Leone A., Servili M. 2021. Development of an innovative rotating spiral heat exchanger with integrated microwave module for the olive oil industry. LWT – Food. Sci. Technol. 147:111622. DOI: https://doi.org/10.1016/j.lwt.2021.111622
Taticchi A., Esposto S., Veneziani G., Minnocci A., Urbani S., Selvaggini R., Sordini B., Daidone L., Sebastiani L., Servili, M. 2021. High vacuum-assisted extraction affects virgin olive oil quality: impact on phenolic and volatile compounds. Food. Chem. 342:128369. DOI: https://doi.org/10.1016/j.foodchem.2020.128369
Tsimidou M.Z., Mastralexi A., Özdikicierler O. 2020. Cold pressed virgin olive oils. In: Ramadan M.F. (ed). Cold Pressed Oils Green Technology, Bioactive Compounds, Functionality, and Applications. London, UK: Academic Press. pp. 547-573 DOI: https://doi.org/10.1016/B978-0-12-818188-1.00050-5
Veillet S., Tomao V., Bornard I., Ruiz K., Chemat F. 2009. Chemical changes in virgin olive oils as a function of crushing systems: stone mill and hammer crusher. CR. Chim. 12:895-904. DOI: https://doi.org/10.1016/j.crci.2009.01.003

How to Cite

Cappelli, A., Lupori, L. and Cini, E. (2023) “Should extra virgin olive oil production change the approach? A systematic review of challenges and opportunities to increase sustainability, productivity, and product quality”, Journal of Agricultural Engineering, 54(1). doi: 10.4081/jae.2023.1479.

Similar Articles

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.