Proposal of an integrated 3D architectural survey method for application in historic agri-food building analysis and representation

Published: 4 April 2023
Abstract Views: 1196
PDF: 433
HTML: 7
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In Italy, historic agri-food buildings can be considered a relevant material expression and testimony of century-old agriculture and food processing practices handed down by generations. Recently they have gained ever-growing importance as a part of the wider architectural heritage. As such, they deserve dedicated general surveys to build a thorough knowledge of their distinctive characteristics and investigate their current condition, setting the basis for the implementation of planning and management actions for their sustainable valorisation. To this end, building information modelling can be considered an efficient strategy to preserve construction information by creating 3D models based on surveys of the built heritage. To acquire in a fast and accurate way geometric, reflectance, and colour data of rural buildings as a 3D point cloud, the terrestrial laser scanner (TLS) represents a powerful tool. The traditional TLS-based survey methods, in the context of historic agricultural buildings, have several limitations, mainly due to the presence of inaccessible parts and bulky machinery once used for processing and storage. In the present research, to overcome these issues and thus have a complete survey, we describe a proposal of an integrated methodology for obtaining 3D point-cloud data of existing rural agri-food buildings based on the integrated use of TLS, hand-held scanner, and unmanned aerial vehicles instruments. The proposed methodology was tested in surveying three historic agri-food buildings, and the accuracy of the obtained 3D point cloud was calculated using the root mean square error (RMSE) on the X, Y, and Z alignment of the two different 3D point clouds in correspondence of the used B/W target. Moreover, a measure of the distance between two merged 3D point clouds in their overlap area has been performed using the multi-scale model to model cloud comparison (M3C2). RMSE analysis always shows values lesser than 1 cm, and M3C2 shows values between 0 and about 6 cm.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Crossref
Scopus
Google Scholar
Europe PMC
Abellán A., Oppikofer T., Jaboyedoff M., Rosser N.J., Lim M., Lato M.J. 2014. Terrestrial laser scanning of rock slope instabilities. Earth Surf. Process. Landforms 39:80-97. DOI: https://doi.org/10.1002/esp.3493
Achille C., Adami A., Chiarini S., Cremonesi S., Fassi F., Fregonese L., Taffurelli L. 2015. UAV-based photogrammetry and integrated technologies for architectural applications-methodological strategies for the after-quake survey of vertical structures in Mantua (Italy). Sensors 15:15520-39. DOI: https://doi.org/10.3390/s150715520
Adam J.P. 1999. Roman building. Routledge London, UK.
Adan A., Huber D. 2011. 3D reconstruction of interior wall surfaces under occlusion and clutter, in: 2011 international conference on 3D imaging, modeling, processing, visualization and transmission. In: 2011 international conference on 3D imaging, modeling, processing, visualization and transmission. IEEE, New York, NY, USA, pp. 275-81. DOI: https://doi.org/10.1109/3DIMPVT.2011.42
Antanavičiūtė U., Obuchovski R., Paršeliūnas E.K., Popovas M.G.D., Šlikas D. 2013. Some issues regarding the calibration of the terrestrial laser scanner Leica Scanstation C10. Geod. Cartogr. 39:138-43. DOI: https://doi.org/10.3846/20296991.2013.840356
Arayici Y. 2008. Towards building information modelling for existing structures. Struct. Surv. 26:210-22. DOI: https://doi.org/10.1108/02630800810887108
Bakirman T., Bayram B., Akpinar B., Karabulut M.F., Bayrak O.C., Yigitoglu A., Seker D.Z. 2020. Implementation of ultra-light UAV systems for cultural heritage documentation. J. Cult. Herit. 44:174-84. DOI: https://doi.org/10.1016/j.culher.2020.01.006
Banfi F. 2019. The integration of a scan-To-hbim process in bim application: the development of an add-in to guide users in autodesk revit. Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 42:141-8. DOI: https://doi.org/10.5194/isprs-archives-XLII-2-W11-141-2019
Barreca F., Modica G., Di Fazio S., Tirella V., Tripodi R., Fichera C.R. 2017. Improving building energy modelling by applying advanced 3D surveying techniques on agri-food facilities. J. Agric. Eng. 48:203-8. DOI: https://doi.org/10.4081/jae.2017.677
Bastem S.S., Cekmis A. 2022. Development of historic building information modelling: a systematic literature review. Build. Res. Inf. 50:527-58. DOI: https://doi.org/10.1080/09613218.2021.1983754
Besl P., McKay N. 1992. A method for registration of 3-D shapes. Trans. Pattern Anal. Mach. Intell. 14:239-56. DOI: https://doi.org/10.1109/34.121791
Borrmann A., König M., Koch C., Beetz J. 2018. Building information modeling: why? What? How?, In: Borrmann A., König M., Koch C., Beetz J. (eds.). Building information modeling. Springer International Publishing, Berlin, Germany, pp. 1-24. DOI: https://doi.org/10.1007/978-3-319-92862-3_1
Brodu N., Lague D. 2012. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS J. Photogramm. Remote Sens. 68:121-34. DOI: https://doi.org/10.1016/j.isprsjprs.2012.01.006
Cascone G., Pennisi P., Di Fazio S. 1997. Edificios protoindustriales para la producción de vino en Sicilia los Palmentos y las bodegas del Etna desde el siglo XVII al XIX (proto-industrial buildings for wine production in Sicily: the palmenti and wine cellars since XVII to XIX centuries). Informes Construcción 49:61-76. [Article in Spanish]. DOI: https://doi.org/10.3989/ic.1997.v49.i450.949
Chatzistamatis S., Kalaitzis P., Chaidas K., Chatzitheodorou C., Papadopoulou E.E., Tataris G., Soulakellis N. 2018. Fusion of TLS and UAV photogrammetry data for post-earthquake 3D modeling of a cultural heritage church. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42:143-50. DOI: https://doi.org/10.5194/isprs-archives-XLII-3-W4-143-2018
Chen K., Lu W., Peng Y., Rowlinson S., Huang G.Q. 2015. Bridging BIM and building: from a literature review to an integrated conceptual framework. Int. J. Proj. Manag. 33:1405-16. DOI: https://doi.org/10.1016/j.ijproman.2015.03.006
Cheng L., Tong L., Li M., Liu Y. 2013. Semi-automatic registration of airborne and terrestrial laser scanning data using building corner matching with boundaries as reliability check. Remote Sens. 5:6260-83. DOI: https://doi.org/10.3390/rs5126260
Chiabrando F., Sammartano G., Spanò A. 2016. Historical buildings models and their handling via 3D survey: from points clouds to user-oriented HBIM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B5:633-40. DOI: https://doi.org/10.5194/isprs-archives-XLI-B5-633-2016
Cucchiaro S., Fallu D.J., Zhang H., Walsh K., Van Oost K., Brown A.G., Tarolli P. 2020. Multiplatform-SfM and TLS data fusion for monitoring agricultural terraces in complex topographic and landcover conditions. Remote Sens. 12:1946. DOI: https://doi.org/10.3390/rs12121946
De Luca G., Silva J.M.N., Cerasoli S., Araújo J., Campos J., Di Fazio S., Modica G. 2019. Object-based land cover classification of cork oak woodlands using UAV imagery and orfeo toolbox. Remote Sens. 11:1238. DOI: https://doi.org/10.3390/rs11101238
Di Angelo L., Di Stefano P., Fratocchi L., Marzola A. 2018. An AHP-based method for choosing the best 3D scanner for cultural heritage applications. J. Cult. Herit. 34:109-15. DOI: https://doi.org/10.1016/j.culher.2018.03.026
Di Fazio S. 2008. Archetipi, permanenze e tendenze innovative nell’evoluzione degli oleifici in Calabria tra il XVIII e il XX secolo. Available from: https://www.accademiaxl.it/documenti/scienza-mezzogiorno/Contributi_Volume_I.pdf. [Article in Italian].
Di Fazio S. 1999. Rural architecture of Europe, the ECOVAST strategy. In: Conference on the Future of Rural Buildings in Ulster. Belfast UAHS - Ulster Architectural Heritage Society, pp. 42-54.
Di Fazio S., Fichera C.R., Bonomo G. 1999. Old factory buildings for the production of olive oil in Calabria. Current situation and conservation strategies. In: 8th International Scientific Conference “Theoretical and Practical Issues of Monument Preservation” on Vernacular Architectural Heritage. Utilitas Publisher, Tusnad, pp. 103–108.
Di Fazio S., Modica G. 2018. Historic rural landscapes: sustainable planning strategies and action criteria. The Italian experience in the global and European context. Sustainability 10:3834. DOI: https://doi.org/10.3390/su10113834
Di Fazio S., Modica G., Fichera C.R. 2016. ArcheOILogy: a spatial data infrastructure for the integrated management of the historic landscape and heritage related to olive-oil production in Calabria (Italy). In: UNISCAPE en-route a.I-n.4. Available from: http://www.uniscape.eu/documents/UNISCAPE_EN_ROUTE_n_4.pdf.
Diara F. 2022. HBIM open source: a review. Int. J. Geo-Inf. 11:472. DOI: https://doi.org/10.3390/ijgi11090472
Diara F., Rinaudo F. 2018. Open source HBIM for cultural heritage: a project proposal. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-2:303-9. DOI: https://doi.org/10.5194/isprs-archives-XLII-2-303-2018
Dore C., Murphy M. 2012. Integration of historic building information modeling (HBIM) and 3D GIS for recording and managing cultural heritage sites. Available from: https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1072&context=beschreccon. DOI: https://doi.org/10.1109/VSMM.2012.6365947
Dumitru R., Borrmann D., Nuchter A. 2013. Interior reconstruction using the 3D hough transform. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-5/W1:65-72. DOI: https://doi.org/10.5194/isprsarchives-XL-5-W1-65-2013
Fan L., Smethurst J.A., Atkinson P.M., Powrie W. 2015. Error in target-based georeferencing and registration in terrestrial laser scanning. Comput. Geosci. 83:54-64. DOI: https://doi.org/10.1016/j.cageo.2015.06.021
Fryskowska A., Stachelek J. 2018. A no-reference method of geometric content quality analysis of 3D models generated from laser scanning point clouds for hBIM. J. Cult. Herit. 34:95-108. DOI: https://doi.org/10.1016/j.culher.2018.04.003
Garcìa A.I., Ayuga F. 2007. Reuse of abandoned buildings and the rural landscape: the situation in Spain. Am. Soc. Agric. Biol. Eng. 50:1383-94. DOI: https://doi.org/10.13031/2013.23627
Givi M., Cournoyer L., Reain G., Eves B.J. 2019. Performance evaluation of a portable 3D imaging system. Precis. Eng. 59:156-65. DOI: https://doi.org/10.1016/j.precisioneng.2019.06.002
Granshaw S.I. 2016. Photogrammetric terminology: third edition. Photogramm. Rec. 31:210-52. DOI: https://doi.org/10.1111/phor.12146
Grimaldi D.M. 1773. Istruzioni sulla nuova manifattura dell’olio introdotta nel Regno di Napoli dal marchese Domenico Grimaldi di Messimeri patrizio genovese socio ordinario, e corrispondente dell'Accademia de' Georgofili di Firenze, della Societa di Agricoltura di Parigi, e di Berna. Available from: https://books.google.it/books?id=lJd6uSKuZAkC&printsec=frontcover&hl=it&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false. [Book in Italian].
Heritage G.L., Large A.R.G. 2009. Laser scanning for the environmental sciences. Chichester, UK, Wiley-Blackwell. DOI: https://doi.org/10.1002/9781444311952
ICOMOS. 1999. Charter on the built vernacular heritage. Available from: https://www.icomos.org/images/DOCUMENTS/Charters/vernacular_e.pdf.
Ingman M., Virtanen J.P., Vaaja M.T., Hyyppä H. 2020. A comparison of low-cost sensor systems in automatic cloud-based indoor 3D modeling. Remote Sens. 12:2624. DOI: https://doi.org/10.3390/rs12162624
Ivanov K. 2020. Digital three-dimensional architectural survey of traditional Bulgarian houses - architectural BIM from point cloud survey data. Conserv. Património 36:36-45. DOI: https://doi.org/10.14568/cp2019027
Jo Y., Hong S. 2019. Three-dimensional digital documentation of cultural heritage site based on the convergence of terrestrial laser scanning and unmanned aerial vehicle photogrammetry. Int. J. Geo-Inf. 8:53. DOI: https://doi.org/10.3390/ijgi8020053
Kaneda A., Nakagawa T., Tamura K., Noshita K., Nakao H. 2022. A proposal of a new automated method for SfM/MVS 3D reconstruction through comparisons of 3D data by SfM/MVS and hand-held laser scanners. PLoS One 17:e0270660. DOI: https://doi.org/10.1371/journal.pone.0270660
Lague D., Brodu N., Leroux J. 2013. Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 82:10-26. DOI: https://doi.org/10.1016/j.isprsjprs.2013.04.009
Lawrence K.A. 2012. Sensor and data fusion: a tool for information assessment and decision making. SPIE, Bellingham, WA, USA.
Leanza P., Porto S., Sapienza V., Cascone S. 2016. A heritage interpretation-based itinerary to enhance tourist use of traditional rural buildings. Sustainability 8:47. DOI: https://doi.org/10.3390/su8010047
Logothetis S., Delinasiou A., Stylianidis E. 2015. Building information modelling for cultural heritage: a review. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. II-5/W3:177-83. DOI: https://doi.org/10.5194/isprsannals-II-5-W3-177-2015
Logothetis S., Stylianidis E. 2016. BIM open source software (OSS) for the documentation of cultural heritage. Virtual Archaeol. Rev. 7:28. DOI: https://doi.org/10.4995/var.2016.5864
Mandelli A., Fassi F., Perfetti L., Polari C. 2017. Testing different survey techniques to model architectonic narrow spaces. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-2/W5:505-11. DOI: https://doi.org/10.5194/isprs-archives-XLII-2-W5-505-2017
Martínez-Carricondo P., Carvajal-Ramírez F., Yero-Paneque L., Agüera-Vega F. 2020. Combination of nadiral and oblique UAV photogrammetry and HBIM for the virtual reconstruction of cultural heritage. Case study of Cortijo del Fraile in Níjar, Almería (Spain). Build. Res. Inf. 48:140-59. DOI: https://doi.org/10.1080/09613218.2019.1626213
Mazzotti M. 2004. Enlightened mills: mechanizing olive oil production in Mediterranean Europe. Technol. Cult. 45:277-304. DOI: https://doi.org/10.1353/tech.2004.0106
Meinen B.U., Robinson D.T. 2020. Mapping erosion and deposition in an agricultural landscape: optimization of UAV image acquisition schemes for SfM-MVS. Remote Sens. Environ. 239:111666. DOI: https://doi.org/10.1016/j.rse.2020.111666
Messina G., Praticò S., Badagliacca G., Di Fazio S., Monti M., Modica G. 2021. Monitoring onion crop “cipolla rossa di Tropea Calabria IGP” growth and yield response to varying nitrogen fertilizer application rates using UAV imagery. Drones 5:61. DOI: https://doi.org/10.3390/drones5030061
Mill T., Alt A., Liias R. 2013. Combined 3D building surveying techniques – terrestrial laser scanning (TLS) and total station surveying for BIM data management purpOSES. J. Civ. Eng. Manag. 19:S23-S32. DOI: https://doi.org/10.3846/13923730.2013.795187
Modica G., De Luca G., Messina G., Praticò S. 2021. Comparison and assessment of different object-based classifications using machine learning algorithms and UAVs multispectral imagery: a case study in a citrus orchard and an onion crop. Eur. J. Remote Sens. 54:431-60. DOI: https://doi.org/10.1080/22797254.2021.1951623
Moyano J., Justo-Estebaranz Á., Nieto-Julián J.E., Barrera A.O., Fernández-Alconchel M. 2022. Evaluation of records using terrestrial laser scanner in architectural heritage for information modeling in HBIM construction: the case study of the La Anunciación church (Seville). J. Build. Eng. 62:e105190. DOI: https://doi.org/10.1016/j.jobe.2022.105190
Moyano J., León J., Nieto-Julián J.E., Bruno S. 2021. Semantic interpretation of architectural and archaeological geometries: point cloud segmentation for HBIM parameterisation. Autom. Constr. 130:103856. DOI: https://doi.org/10.1016/j.autcon.2021.103856
Müller P., Wonka P., Haegler S., Ulmer A., Van Gool L. 2006. Procedural modeling of buildings. ACM Trans. Graph. 25:614-23. DOI: https://doi.org/10.1145/1141911.1141931
Murphy M., McGovern E., Pavia S. 2013. Historic building information modelling – adding intelligence to laser and image based surveys of European classical architecture. ISPRS J. Photogramm. Remote Sens. 76:89-102. DOI: https://doi.org/10.1016/j.isprsjprs.2012.11.006
Murphy M., McGovern E., Pavia S. 2009. Historic building information modelling (HBIM). Struct. Surv. 27:311-27. DOI: https://doi.org/10.1108/02630800910985108
Oreni D., Brumana R., Della Torre S., Banfi F., Barazzetti L., Previtali M. 2014. Survey turned into HBIM: the restoration and the work involved concerning the Basilica di Collemaggio after the earthquake (L’Aquila). ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. II-5:267-73. DOI: https://doi.org/10.5194/isprsannals-II-5-267-2014
Osello A., Lucibello G., Morgagni F. 2018. HBIM and virtual tools: a new chance to preserve architectural heritage. Buildings 8:12. DOI: https://doi.org/10.3390/buildings8010012
Pärn E.A., Edwards D.J., Sing M.C.P. 2017. The building information modelling trajectory in facilities management: a review. Autom. Constr. 75:45-55. DOI: https://doi.org/10.1016/j.autcon.2016.12.003
Picuno P. 2012. Vernacular farm buildings in landscape planning: a typological analysis in a southern Italian region. J. Agric. Eng. 43:e20. DOI: https://doi.org/10.4081/jae.2012.150
Pocobelli D.P., Boehm J., Bryan P., Still J., Grau-Bové J. 2018. BIM for heritage science: a review. Herit. Sci. 6:30. DOI: https://doi.org/10.1186/s40494-018-0191-4
Poloprutský Z. 2018. Metric survey documentation as a basis for understanding the development of rural architecture. Stavební Obz. Civ. Eng. J. 27:48-59. DOI: https://doi.org/10.14311/CEJ.2018.01.0005
Poloprutský Z. 2019. Parametric modelling for HBIM: design of window library for rural building. Stavební Obz. Civ. Eng. J. 28:620-30. DOI: https://doi.org/10.14311/CEJ.2019.04.0052
Probst J., Dritsas K., Halazonetis D., Ren Y., Katsaros C., Gkantidis N. 2022. Precision of a hand-held 3D surface scanner in dry and wet skeletal surfaces: an ex vivo study. Diagnostics 12:2251. DOI: https://doi.org/10.3390/diagnostics12092251
Quattrini R., Malinverni E.S., Clini P., Nespeca R., Orlietti E. 2015. From TLS to HBIM: high quality semantically-aware 3D modeling of complex architecture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-5/W4:367-74. DOI: https://doi.org/10.5194/isprsarchives-XL-5-W4-367-2015
Rocha G., Mateus L., Fernández J., Ferreira V. 2020. A scan-to-BIM methodology applied to heritage buildings. Heritage 3:47-67. DOI: https://doi.org/10.3390/heritage3010004
Rodríguez-Martín M., Rodríguez-Gonzálvez P., Ruiz de Oña Crespo E., González-Aguilera D. 2019. Validation of portable mobile mapping system for inspection tasks in thermal and fluid-mechanical facilities. Remote Sens. 11:2205. DOI: https://doi.org/10.3390/rs11192205
Ruggiero G., Parlavecchia M., Dal Sasso P. 2019. Typological characterisation and territorial distribution of traditional rural buildings in the Apulian territory (Italy). J. Cult. Herit. 39:278-87. DOI: https://doi.org/10.1016/j.culher.2019.02.012
Russhakim N.A.S., Ariff M.F.M., Majid Z., Idris K.M., Darwin N., Abbas M.A., Zainuddin K., Yusoff A.R. 2019. The suitability of terrestrial laser scanning for building survey and mapping applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-2/W9:663-70. DOI: https://doi.org/10.5194/isprs-archives-XLII-2-W9-663-2019
Salamanca S., Cerrada C. 2012. Filling holes in manifold digitized 3D meshes using image restoration algorithms. Proc. 2012 IEEE Intell. Veh. Symp. Work., Alcalá de Henares, Spain.
Santagati C., Laurini C.R., Sanfilippo G., Bakirtzis N., Papacharalambous D., Hermon S. 2019. HBIM for the surveying, analysis and restoration of the Saint John THE Theologian Cathedral IN Nicosia (Cyprus). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-2/W11:1039-46. DOI: https://doi.org/10.5194/isprs-archives-XLII-2-W11-1039-2019
Saptari A.Y., Widyastuti R., Hamdani. 2022. Various high density point cloud registration results analysis in heritage building (penataran temple, Penglipuran village, Bali). Int. J. Adv. Sci. Eng. Inf. Technol. 12: 2046-52. DOI: https://doi.org/10.18517/ijaseit.12.5.15654
Schürch P., Densmore A.L., Rosser N.J., Lim M., McArdell B.W. 2011. Detection of surface change in complex topography using terrestrial laser scanning: application to the Illgraben debris-flow channel. Earth Surf. Process. Landforms 36:1847-59. DOI: https://doi.org/10.1002/esp.2206
Serafin J., Grisetti G. 2017. Using extended measurements and scene merging for efficient and robust point cloud registration. Rob. Auton. Syst. 92:91-106. DOI: https://doi.org/10.1016/j.robot.2017.03.008
Solano F., Modica G., Praticò S., Box O.F., Piovesan G. 2022. Unveiling the complex canopy spatial structure of a Mediterranean old-growth beech (Fagus sylvatica L.) forest from UAV observations. Ecol. Indic. 138:108807. DOI: https://doi.org/10.1016/j.ecolind.2022.108807
Stumpf A., Malet J.P., Allemand P., Pierrot-Deseilligny M., Skupinski G. 2015. Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology 231:130-45. DOI: https://doi.org/10.1016/j.geomorph.2014.10.039
Thomson C., Boehm J. 2015. Automatic geometry generation from point clouds for BIM. Remote Sens. 7:11753-75. DOI: https://doi.org/10.3390/rs70911753
Ursini A., Grazzini A., Matrone F., Zerbinatti M. 2022. From scan-to-BIM to a structural finite elements model of built heritage for dynamic simulation. Autom. Constr. 142:104518. DOI: https://doi.org/10.1016/j.autcon.2022.104518
Vacca G., Dessì A., Sacco A. 2017. The use of nadir and oblique UAV images for building knowledge. Int. J. Geo-Inf. 6:393. DOI: https://doi.org/10.3390/ijgi6120393
Volk R., Stengel J., Schultmann F. 2014. Building information modeling (BIM) for existing buildings - literature review and future needs. Autom. Constr. 38:109-27. DOI: https://doi.org/10.1016/j.autcon.2013.10.023
Warrick J.A., Ritchie A.C., Adelman G., Adelman K., Limber PW. 2017. New Techniques to measure cliff change from historical oblique aerial photographs and structure-from-motion photogrammetry. J. Coast. Res. 33:39-55. DOI: https://doi.org/10.2112/JCOASTRES-D-16-00095.1
Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., Reynolds J.M. 2012. “Structure-from-Motion” photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300-14. DOI: https://doi.org/10.1016/j.geomorph.2012.08.021
Williams J.G., Anders K., Winiwarter L., Zahs V., Höfle B. 2021. Multi-directional change detection between point clouds. J. Photogramm. Remote Sens. 172:95-113. DOI: https://doi.org/10.1016/j.isprsjprs.2020.12.002
Xia S., Guo S., Li J., Istook C. 2019. Comparison of different body measurement techniques: 3D stationary scanner, 3D hand-held scanner, and tape measurement. J. Text. Inst. 110:1103-13. DOI: https://doi.org/10.1080/00405000.2018.1541437
Xu Z., Wu L., Shen Y., Li F., Wang Q., Wang R. 2014. Tridimensional reconstruction applied to cultural heritage with the use of camera-equipped UAV and terrestrial laser scanner. Remote Sens. 6:10413-34. DOI: https://doi.org/10.3390/rs61110413
Yang S., Xu S., Huang W. 2022. 3D Point cloud for cultural heritage: a scientometric survey. Remote Sens. 14:5542. DOI: https://doi.org/10.3390/rs14215542
Zhao X. 2017. A scientometric review of global BIM research: analysis and visualization. Autom. Constr. 80:37-47. DOI: https://doi.org/10.1016/j.autcon.2017.04.002

How to Cite

Praticò, S. . (2023) “Proposal of an integrated 3D architectural survey method for application in historic agri-food building analysis and representation”, Journal of Agricultural Engineering, 54(3). doi: 10.4081/jae.2023.1521.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.