Modelling the impacts of water harvesting and climate change on rainfed maize yields in Senegal

Published: 16 June 2023
Abstract Views: 1672
PDF: 594
HTML: 79
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Senegalese agriculture is threatened by climate change effects, affecting rainfall variability both at interannual and interdecadal timescales. Using FAO’s AquaCrop crop-growth model, we tested the efficiency of an in situ water harvesting technique - tied ridges - for maize cropping in the Fatick region in Senegal in response to changes in temperature and precipitation with different fertility levels and different soils. Results showed that tied ridges did not significantly impact maize yields considering the current climate and soil fertility. The rainfall amount was enough for maize production and to avoid water stress during the cropping season. Under perturbed climates and, especially in years with low average rainfall amounts, high losses in yield were registered under optimal fertility conditions (up to 80%). The most substantial effect was obtained when tied ridges were simulated on clay soil, enhancing yields by 5.6% and 13% at actual and optimal fertility conditions, respectively. Our results highlighted how the current maize production in the Fatick region in Senegal is not significantly water constrained in the current climate scenario, while it could be potentially impacted by climate change in the near future. In a pessimistic climate change scenario, in situ water harvesting can potentially avoid excessive crop losses.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
Alvar-Beltrán, J., Dibari, C., Ferrise, R., Bartoloni, N., & Dalla Marta, A. (2023). Modelling climate change impacts on crop production in food insecure regions: The case of Niger. European Journal of Agronomy, 142, 126667. DOI: https://doi.org/10.1016/j.eja.2022.126667
Alvar-Beltrán, J., Heureux, A., Soldan, R., Manzanas, R., Khan, B., & Dalla Marta, A. (2021). Assessing the impact of climate change on wheat and sugarcane with the AquaCrop model along the Indus River Basin, Pakistan. Agricultural Water Management, 253, 106909. DOI: https://doi.org/10.1016/j.agwat.2021.106909
ANSD, L’Agence nationale de la Statistique et de la Démographique (2014). Available from: http://www.ansd.sn/index.php?option=com_regions&view=region&id=6.
Araya, A., & Stroosnijder, L. (2010). Effects of tied ridges and mulch on barley (Hordeum vulgare) rainwater use efficiency and production in Northern Ethiopia. Agricultural water management, 97(6), 841-847. DOI: https://doi.org/10.1016/j.agwat.2010.01.012
Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., ... & Zickfeld, K. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary.
Biazin, B., & Stroosnijder, L. (2012). To tie or not to tie ridges for water conservation in Rift Valley drylands of Ethiopia. Soil and Tillage Research, 124, 83-94. DOI: https://doi.org/10.1016/j.still.2012.05.006
Bird, D. N., Benabdallah, S., Gouda, N., Hummel, F., Koeberl, J., La Jeunesse, I., ... & Woess-Gallasch, S. (2016). Modelling climate change impacts on and adaptation strategies for agriculture in Sardinia and Tunisia using AquaCrop and value-at-risk. Science of the total environment, 543, 1019-1027. DOI: https://doi.org/10.1016/j.scitotenv.2015.07.035
Brhane, G., Wortmann, C. S., Mamo, M., Gebrekidan, H., & Belay, A. (2006). Micro‐basin tillage for grain sorghum production in semiarid areas of northern Ethiopia. Agronomy Journal, 98(1), 124-128. DOI: https://doi.org/10.2134/agronj2005-0148
Christensen, J. H., Boberg, F., Christensen, O. B., & Lucas‐Picher, P. (2008). On the need for bias correction of regional climate change projections of temperature and precipitation. Geophysical research letters, 35(20). DOI: https://doi.org/10.1029/2008GL035694
CIAT & BFS/USAID (2016). Climate-Smart Agriculture in Senegal. CSA Country Profiles for Africa Series. Washington, D.C.: International Center for Tropical Agriculture (CIAT), Bureau for Food Security, United States Agency for International Development (BFS/USAID). Available from: https://cgspace.cgiar.org/handle/10568/74524.
Cooper, P. J., Dimes, J., Rao, K. P. C., Shapiro, B., Shiferaw, B., & Twomlow, S. (2008). Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change?. Agriculture, ecosystems & environment, 126(1-2), 24-35. DOI: https://doi.org/10.1016/j.agee.2008.01.007
D’Alessandro, S., Fall, A. A., Grey, G., Simpkin, S., Wane, A. (2015). Senegal : Agricultural Sector Risk Assessment. Agriculture global practice technical assistance paper;. World Bank, Washington, DC. https://openknowledge.worldbank.org/handle/10986/22747
DAPSA, Direction de l’Analyse, de la Prèvention et des Statistiques Agricoles, (2020). Rapport de la phase 1 de l’Enquete Agricole Annuelle (EAA) 2019-2020. Available from: https://www.dapsa.gouv.sn/sites/default/files/publications/Rapport_final_EAA_2019_2020_Erratum-_0.pdf.
Department of agriculture and rural development central west region, (2003). African development fund, project to support local small-scale irrigation support. Available from: https://www.afdb.org/fileadmin/uploads/afdb/Documents/Project-and-Operations/Senegal_-_Project_to_Support_Local_Small_-_Scale_Irrigation_Support_PAPIL_-_Appraisal_Report.pdf.
Diakhate, D. (2014). Net Irrigation Requirements for Maize and Sorgum in Isra-Nioro, Province of Kaolack (Senegal). International Journal of Humanities and Social Science, 4(6), 267–281.
Diouf, N. S., Ouedraogo, M., Ouedraogo, I., Ablouka, G., & Zougmoré, R. (2020). Using seasonal forecast as an adaptation strategy: Gender differential impact on yield and income in Senegal. Atmosphere, 11(10). https://doi.org/10.3390/atmos11101127. DOI: https://doi.org/10.3390/atmos11101127
Fall, C. M. N., Lavaysse, C., Drame, M. S., Panthou, G., & Gaye, A. T. (2021). Wet and dry spells in Senegal: comparison of detection based on satellite products, reanalysis, and in situ estimates. Natural Hazards and Earth System Sciences, 21(3), 1051-1069. DOI: https://doi.org/10.5194/nhess-21-1051-2021
FAO, (2020). The State of Food and Agriculture 2020. Overcoming water challenges in agriculture. Rome. Available from: https://www.fao.org/documents/card/en/c/cb1447en/.
FAO/GIEWS, (2020). Country Brief Senegal Reference. Available from: https://www.fao.org/giews/countrybrief/country.jsp?code=SEN&lang=es.
Faye, B., & Du, G. (2021). Agricultural Land Transition in the ‘Groundnut Basin’ of Senegal: 2009 to 2018. Land, 10(10), 996. DOI: https://doi.org/10.3390/land10100996
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., ... & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1), 1-21. DOI: https://doi.org/10.1038/sdata.2015.66
Gueye, F. (2021). Analysis of the Determinants of Rice and Maize Productivity in the Southern Zone of Senegal. Asian Journal of Agricultural Extension, Economics & Sociology, 39(1), 112–122. https://doi.org/10.9734/ajaees/2021/v39i130514. DOI: https://doi.org/10.9734/ajaees/2021/v39i130514
Hernández, C. M., Faye, A., Ly, M. O., Stewart, Z. P., Vara Prasad, P. V., Bastos, L. M., ... & Ciampitti, I. A. (2021). Soil and Climate Characterization to Define Environments for Summer Crops in Senegal. Sustainability, 13(21), 11739. DOI: https://doi.org/10.3390/su132111739
Hsiao, T. C., Heng, L., Steduto, P., Rojas‐Lara, B., Raes, D., & Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101(3), 448-459. DOI: https://doi.org/10.2134/agronj2008.0218s
Hunink, J.E., W.W. Immerzeel, P. Droogers, S. Kaufmann, 2010. Green Water Credits for the Upper Tana Basin, Kenya. Phase II - Pilot Operations: Biophysical assessment using SWAT. Green Water Credits Report 10 / ISRIC Report 2010/04, ISRIC World Soil Information, Wageningen
Jensen, J. R., Bernhard, R. H., Hansen, S., McDonagh, J., Møberg, J. P., Nielsen, N. E., & Nordbo, E. (2003). Productivity in maize based cropping systems under various soil–water–nutrient management strategies in a semi-arid, alfisol environment in East Africa. Agricultural Water Management, 59(3), 217-237. DOI: https://doi.org/10.1016/S0378-3774(02)00151-8
Jha, P. K., Araya, A., Stewart, Z. P., Faye, A., Traore, H., Middendorf, B. J., & Prasad, P. V. V. (2021). Projecting potential impact of COVID-19 on major cereal crops in Senegal and Burkina Faso using crop simulation models. Agricultural Systems, 190(February), 103107. https://doi.org/10.1016/j.agsy.2021.103107. DOI: https://doi.org/10.1016/j.agsy.2021.103107
Kephe, P. N., Ayisi, K. K., & Petja, B. M. (2021). Challenges and opportunities in crop simulation modelling under seasonal and projected climate change scenarios for crop production in South Africa. Agriculture & Food Security, 10(1), 1-24. DOI: https://doi.org/10.1186/s40066-020-00283-5
Laminou, R. H. M., Ndiaye, S., Diallo, D., Badara Dieye, A., Dalanda Diallo, M., & Guisse, A. (2020). Mineral Fertilizer Microdosing Alone or Combined with Urea on Maize and According to the Soil Chemical Elements Variation (Thies, Senegal). American Journal of Agriculture and Forestry, 8(3), 69. https://doi.org/10.11648/j.ajaf.20200803.13. DOI: https://doi.org/10.11648/j.ajaf.20200803.13
Laux, P., Rötter, R. P., Webber, H., Dieng, D., Rahimi, J., Wei, J., ... & Kunstmann, H. (2021). To bias correct or not to bias correct? An agricultural impact modelers’ perspective on regional climate model data. Agricultural and Forest Meteorology, 304, 108406. DOI: https://doi.org/10.1016/j.agrformet.2021.108406
Madalcho, A. B., & Sido, M. Y. (2015). Performance of in-situ rainwater conservation tillage techniques and inorganic fertilizer practices on sorghum production at Ethiopia Somali Region (Kurdha Metan district). International Journal of Agricultural Science Research, 4(5), 98-108.
Mak-Mensah, E., Obour, P. B., & Wang, Q. (2021). Influence of tied-ridge-furrow with inorganic fertilizer on grain yield across semiarid regions of Asia and Africa: A meta-analysis. PeerJ, 9, e11904. DOI: https://doi.org/10.7717/peerj.11904
McSweeney, C., New, M., & Lizcano, G. (2008). UNDP climate change country profiles: Senegal. New York, UNDP. Available from: http://country-profi les.geog.ox.ac.uk.
Muluneh, A. (2020). Impact of climate change on soil water balance, maize production, and potential adaptation measures in the Rift Valley drylands of Ethiopia. Journal of Arid Environments, 179, 104195. DOI: https://doi.org/10.1016/j.jaridenv.2020.104195
Okuyama, Y., Maruyam, A., Takagaki, M., & Kikuchi, M. (2017). Technical efficiency and production potential of selected cereal crops in Senegal. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 118(2), 187–197.
Oweis, T., & Hachum, A. (2006). Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agricultural water management, 80(1-3), 57-73. DOI: https://doi.org/10.1016/j.agwat.2005.07.004
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences, 11(5), 1633-1644. DOI: https://doi.org/10.5194/hess-11-1633-2007
Piemontese, L., Castelli, G., Fetzer, I., Barron, J., Liniger, H., Harari, N., ... & Jaramillo, F. (2020). Estimating the global potential of water harvesting from successful case studies. Global environmental change, 63, 102121. DOI: https://doi.org/10.1016/j.gloenvcha.2020.102121
Pirttioja, N., Carter, T. R., Fronzek, S., Bindi, M., Hoffmann, H., Palosuo, T., ... & Rötter, R. P. (2015). Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Research, 65, 87-105. DOI: https://doi.org/10.3354/cr01322
Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, 7(1), 217-240. DOI: https://doi.org/10.5194/soil-7-217-2021
Raes, D. (2017). ‘AquaCrop Training Handbooks—Book I Understanding AquaCrop.’ Rome: Food and Agriculture Organization of the United Nations 50.
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2018a). ‘Chapter 1: FAO crop-water productivity model to simulate yield response to water: AquaCrop: version 6.0-6.1: reference manual.’ Rome: FAO, (2018).
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2018b). ‘ Annex I: Crop parameters: AquaCrop: version 6.0-6.1: reference manual. ‘ Rome: FAO, (2018).
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2022). ‘AquaCrop version 7 reference manual, chapter 3, calculation procedure.’ Rome: FAO, (2022).
Raes, D., Waongo, M., Vanuytrecht, E., & Mejias Moreno, P. (2021). Improved management may alleviate some but not all of the adverse effects of climate change on crop yields in smallholder farms in West Africa. Agricultural and Forest Meteorology, 308–309(September 2020), 108563. https://doi.org/10.1016/j.agrformet.2021.108563. DOI: https://doi.org/10.1016/j.agrformet.2021.108563
Rockström, J., & Falkenmark, M. (2000). Semiarid crop production from a hydrological perspective: gap between potential and actual yields. Critical reviews in plant sciences, 19(4), 319-346. DOI: https://doi.org/10.1080/07352680091139259
Rockström, J., & Falkenmark, M. (2015). Agriculture: Increase water harvesting in Africa. Nature, 519(7543), 283-285. DOI: https://doi.org/10.1038/519283a
Rockström, J., Barron, J., & Fox, P. (2002). Rainwater management for increased productivity among small-holder farmers in drought prone environments. Physics and Chemistry of the Earth, Parts A/B/C, 27(11-22), 949-959. DOI: https://doi.org/10.1016/S1474-7065(02)00098-0
Roudier, P., Sultan, B., Quirion, P., & Berg, A. (2011). The impact of future climate change on West African crop yields: What does the recent literature say? Global Environmental Change, 21(3), 1073–1083. https://doi.org/10.1016/j.gloenvcha.2011.04.007. DOI: https://doi.org/10.1016/j.gloenvcha.2011.04.007
Ruiz-Ramos, M., Ferrise, R., Rodríguez, A., Lorite, I. J., Bindi, M., Carter, T. R., ... & Rötter, R. P. (2018). Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. Agricultural Systems, 159, 260-274. DOI: https://doi.org/10.1016/j.agsy.2017.01.009
Samir, K. C., & Lutz, W. (2017). The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change, 42, 181-192. DOI: https://doi.org/10.1016/j.gloenvcha.2014.06.004
Sarr, A. B., & Sultan, B. (2022). Predicting crop yields in Senegal using machine learning methods. International Journal of Climatology, November, 1–22. https://doi.org/10.1002/joc.7947. DOI: https://doi.org/10.1002/joc.7947
Saxton, K. E., & Willey, P. H. (2006). The SPAW model for agricultural field and pond hydrologic simulation. Watershed models. CRC Press, Boca Raton, Fl, 401-435. DOI: https://doi.org/10.1201/9781420037432.ch17
Saxton, K.E., Rawls, W.J., (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 70, 1569–1578. DOI: https://doi.org/10.2136/sssaj2005.0117
Sibhatu, B., Berhe, H., Gebrekorkos, G., & Abera, K. (2017). Effect of tied ridging and fertilizer on the productivity of sorghum [Sorghum bicolor (L.) Moench] at Raya Valley, Northern Ethiopia. Current Agriculture Research Journal, 5(3), 396. DOI: https://doi.org/10.12944/CARJ.5.3.20
Sonneveld, B. G. J. S., Keyzer, M. A., & Ndiaye, D. (2016). Quantifying the impact of land degradation on crop production: The case of Senegal. Solid Earth, 7(1), 93–103. https://doi.org/10.5194/se-7-93-2016. DOI: https://doi.org/10.5194/se-7-93-2016
Tamagnone, P., Cea, L., Comino, E., & Rosso, M. (2020). Rainwater harvesting techniques to face water scarcity in african drylands: hydrological efficiency assessment. Water, 12(9), 2646. DOI: https://doi.org/10.3390/w12092646
Villani, L., Castelli, G., Hagos, E. Y., & Bresci, E. (2018). Water productivity analysis of sand dams irrigation farming in northern Ethiopia. Journal of Agriculture and Environment for International Development (JAEID), 112(1), 139-160.
Wallace, J. S. (2000). Increasing agricultural water use efficiency to meet future food production. Agriculture, ecosystems & environment, 82(1-3), 105-119. DOI: https://doi.org/10.1016/S0167-8809(00)00220-6
WaPOR website. Available from: https://www.isda-africa.com/isdasoil/
Wiyo, K. A., Kasomekera, Z. M., & Feyen, J. (2000). Effect of tied-ridging on soil water status of a maize crop under Malawi conditions. Agricultural Water Management, 45(2), 101-125. DOI: https://doi.org/10.1016/S0378-3774(99)00103-1
WMO, World Meteorological Organization (2020). The State of the Climate in Africa. Available from: https://library.wmo.int/?lvl=notice_display&id=21778#.Y1wsWi1aZQI.
Wolka, K., Biazin, B., Martinsen, V., & Mulder, J. (2021). Soil and water conservation management on hill slopes in southwest Ethiopia. II. Modeling effects of soil bunds on surface runoff and maize yield using AquaCrop. Journal of Environmental Management, 296, 113187. DOI: https://doi.org/10.1016/j.jenvman.2021.113187

How to Cite

Setti, A. (2023) “Modelling the impacts of water harvesting and climate change on rainfed maize yields in Senegal”, Journal of Agricultural Engineering, 54(3). doi: 10.4081/jae.2023.1524.