Comparing actual transpiration fluxes as measured at leaf-scale and calculated by a physically based agro-hydrological model

Published: 20 June 2023
Abstract Views: 842
PDF: 300
Appendix: 58
HTML: 4
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The main purpose of this paper is to compare the actual transpiration rates from tomato crop, as measured at leaf scale and estimated by a macroscopic approach in an agro-hydrological model, named FLOWS, under variable soil properties and water availability. To this aim, sixteen plots were cultivated with tomatoes in Metaponto, Southern Italy. Soil hydraulic properties (SHP) were obtained using a fast in-situ characterization method. Leaf-area index (LAI) was measured using a leaf-area meter. SHP and LAI were then used in the physically-based FLOWS which allowed calculating the macroscopic transpiration rates, Ta,m. Single-leaf transpiration rates, Ta,l, and stomatal conductance, gs,l, were measured in situ. For comparing with Ta,m, gs,l was upscaled by Big-Leaf approach to canopy scale stomatal conductance, gs,c, which was applied to Penman-Monteith model to obtain the canopy-scale transpiration, Ta,c. Finally, multiple linear regression (MLR) was used to find the statistical relationship between Ta,m and Ta,c, and the SHP and gs,c. Results showed that the macroscopic approach smooths the spatial variability of transpiration rates. Ta,c increased with the saturated water content, θs, and the slope of the water retention curve, n, while Ta,m decreased with increasing θs and n. MLR improved significantly by introducing gs,c to predict Ta,m.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abrahamsen P., Hansen S. 2000. Daisy: an open soil-crop-atmosphere system model. Environ. Modell. Softw. 15(3): 313–330. doi: https://doi.org/10.1016/S1364-8152(00)00003-7 DOI: https://doi.org/10.1016/S1364-8152(00)00003-7
Ankeny M.D., Kaspar T.C., Horton R. 1988. Design for an automated tension infiltrometer. Soil Sci. Soc. Am. J. 52(3): 893-896. DOI: https://doi.org/10.2136/sssaj1988.03615995005200030054x
Arya L.M., Paris J.F. 1981. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45(6): 1023-1030. DOI: https://doi.org/10.2136/sssaj1981.03615995004500060004x
Babalola O., Fawusi M.O.A. 1980. Drought susceptibility of two tomato (Lycopersicum esculentum) varieties. Plant Soil. 55(2): 205–214. doi: 10.1007/BF02181800 DOI: https://doi.org/10.1007/BF02181800
Baldocchi D., Meyers T. 1998. On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective. Agr. Forest Meteorol. 90(1): 1–25. doi: https://doi.org/10.1016/S0168-1923(97)00072-5 DOI: https://doi.org/10.1016/S0168-1923(97)00072-5
Belviso C., Satriani A., Lovelli S., Comegna A., Coppola A., Dragonetti G., Cavalcante F., Rivelli A.R. 2022. Impact of zeolite from coal fly ash on soil hydrophysical properties and plant growth. Agriculture. 12: 356. doi: https://doi.org/10.3390/agriculture12030356. DOI: https://doi.org/10.3390/agriculture12030356
Bouma J. 1987. Transfer functions and threshold values: from soil characteristics to land qualities. Workshop on Quantified Land Evaluation Process. International Institute for Aerosphere Survey and Earth Science, Washington, D.C., USA, 6: 106-110
Brisson N., Itier B., L’Hotel J.C., Lorendeau J.Y. 1998. Parameterisation of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop models. Ecol. Model. 107(2): 159–169. doi: https://doi.org/10.1016/S0304-3800(97)00215-9 DOI: https://doi.org/10.1016/S0304-3800(97)00215-9
Buck A.L. 1981. New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. Clim. 20(12): 1527–1532. doi: 10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2
Buckley T.N., Mott K.A. 2002. Dynamics of stomatal water relations during the humidity response: implications of two hypothetical mechanisms. Plant Cell Environ. 25(3): 407–419. doi: https://doi.org/10.1046/j.0016-8025.2001.00820.x DOI: https://doi.org/10.1046/j.0016-8025.2001.00820.x
Centritto M., Tognetti R., Leitgeb E., Střelcová K., Cohen S. 2011. Above ground processes: Anticipating climate change influences. In: Bredemeier M., Cohen S., Godbold D.L., Lode E., Pichler V., Schleppi P. (Eds.) Forest management and the water cycle: An ecosystem-based approach, Springer Dordrecht, Berlin, Germany pp. 31-64. doi: https://doi.org/10.1007/978-90-481-9834-4_3 DOI: https://doi.org/10.1007/978-90-481-9834-4_3
Čereković N., Todorović M., Snyder R.L. 2010. The relationship between leaf area index and crop coefficient for tomato crop grown in Southern Italy. Euroinven. 1(1): 3–10.
Comegna A., Coppola A., Dragonetti G. 2019. A soil non-aqueous phase liquid (NAPL) flushing laboratory experiment based on measuring the dielectric properties of soil–organic mixtures via time domain reflectometry (TDR). Hydrol. Earth Syst. Sci. 23: 3593-3602. Doi: https://doi. org/10.5194/hess-23-3593-2019. DOI: https://doi.org/10.5194/hess-23-3593-2019
Comegna A., Coppola A., Dragonetti G. 2020. Time domain reflectometry for dielectric characterization of olive mill wastewater contaminated soils. J. Agr. Eng. 51(4): 248-254. Doi: https://doi. org/10.4081/jae.2020.1092. DOI: https://doi.org/10.4081/jae.2020.1092
Comegna A., Coppola A., Dragonetti G., Severino G., Sommella A., Basile A. 2013. Dielectric properties of a tilled sandy volcanic-vesuvian soil with moderate andic features. Soil till. Res. 133: 93-100. Doi: https://doi. org/ 10. 1016/j. still. 2013. 06. 003. DOI: https://doi.org/10.1016/j.still.2013.06.003
Comegna A., Coppola A., Dragonetti G., Sommella A. 2016. Estimating non-aqueous phase liquid content in variably saturated soils using time domain reflectometry. Vadose Zone J. 15(5): 1-11. doi: https://doi.org/10.2136/vzj2015.11.0145. DOI: https://doi.org/10.2136/vzj2015.11.0145
Comegna A., Coppola A., Dragonetti G., Sommella A. 2017. Interpreting TDR signal propagation through soils with distinct layers of nonaqueous-phase liquid and water content. Vadose Zone J. 16(13): 1-11. doi: https://doi. org/ 10. 2136/ vzj20 17. 07. 0141. DOI: https://doi.org/10.2136/vzj2017.07.0141
Comegna A., Dragonetti G., Kodesova R., Coppola A., 2022b. Impact of olive mill wastewater (OMW) on the soil hydraulic and solute transport properties. Int. J. Environ. Sci. Te. 19: 7079-7092. Doi: https://doi.org/10.1007/s13762-021-03630-6. DOI: https://doi.org/10.1007/s13762-021-03630-6
Comegna A., Severino G., Coppola A., 2022a. A review of new TDR applications for measuring non-aqueous phase liquids (NAPLs) in soils. Environ. Adv. 9: 100296. Doi: https://doi.org/10.1016/j.envadv.2022.100296. DOI: https://doi.org/10.1016/j.envadv.2022.100296
Coppola A., Chaali N., Dragonetti G., Lamaddalena N., Comegna A. 2015. Root uptake under non-uniform root-zone salinity. Ecohydrology. 8(7): 1363–1379. doi: 10.1002/eco.1594 DOI: https://doi.org/10.1002/eco.1594
Coppola A., Comegna A., Dragonetti G., Dyck M., Basile A., Lamaddalena N., Kassab M., Comegna V. 2011. Solute transport scales in an unsaturated stony soil. Adv. Water Resour. 34: 747-759. DOI: https://doi.org/10.1016/j.advwatres.2011.03.006
Coppola A., Dragonetti G., Moghrani S., Hassan S.B.M., Comegna A., 2022. A fast and simple method to measure soil hydraulic properties in multiple sites. Submitted to Vadose Zone J.
Coppola A., Dragonetti G., Sengouga A., Lamaddalena N., Comegna A., Basile A., Noviello N., Nardella L. 2019. Identifying optimal irrigation water needs at district scale by using a physically based agro-hydrological model. Water. 11(4): 841-865. doi: 10.3390/w11040841 DOI: https://doi.org/10.3390/w11040841
Coppola A., Smettem K., Ajeel A., Saeed A., Dragonetti G., Comegna A., Lamaddalena N., Vacca A. 2016. Calibration of an electromagnetic induction sensor with time-domain reflectometry data to monitor rootzone electrical conductivity under saline water irrigation. Eur. J. Soil Sci. 67(6): 737-748. DOI: https://doi.org/10.1111/ejss.12390
Cowan I.R., Farquhar G.D. 1977. Stomatal function in relation to leaf metabolism and environment. Sym. Soc. Exp. Biol. 31: 471–505
Dewar R.C. 2002. The Ball–Berry–Leuning and Tardieu–Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. Plant Cell Environ. 25(11): 1383–1398. doi: https://doi.org/10.1046/j.1365-3040.2002.00909.x DOI: https://doi.org/10.1046/j.1365-3040.2002.00909.x
Dragonetti G., Comegna A., Ajeel A., Deidda G.P., Lamaddalena N., Rodriguez G., Vignoli G., Coppola A. 2018. Calibrating electromagnetic induction conductivities with time domain reflectometry measurements. Hydrol. Earth Syst. Sci. 22(2): 1509-1523. DOI: https://doi.org/10.5194/hess-22-1509-2018
Dragonetti G., Farzamian M., Basile A., Santos F.M., Coppola A. 2022. In situ estimation of soil hydraulic and hydrodispersive properties by inversion of electromagnetic induction measurements and soil hydrological modeling. Hydrol. Earth Syst. Sci. 26(19): 5119-5136. DOI: https://doi.org/10.5194/hess-26-5119-2022
Feddes R.A. 1978. Simulation of field water use and crop yield. PUDOC, Waginengen, The Netherlands. Page 189
Feddes R.A., Raats P.A.C. 2004. Parameterizing the soil - water - plant root system. In: Feddes R. A., de Rooij G. H., van Dam J. C. (Eds.). Unsaturated-zone modeling; Progress, challenges and applications, Wageningen UR Frontis Series : 6. 74, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 95–141.
Frusciante L., Barone A., Carputo D., Ercolano M.R., della Rocca F., Esposito S. 2000. Evaluation and use of plant biodiversity for food and pharmaceuticals. Fitoterapia, 71: S66–S72. doi: https://doi.org/10.1016/S0367-326X(00)00175-1 DOI: https://doi.org/10.1016/S0367-326X(00)00175-1
Hassan S.B.M., Dragonetti G., Comegna A., Sengouga A., Lamaddalena N., Coppola A. 2022. A bimodal extension of the ARYA&PARIS approach for predicting hydraulic properties of structured soils. J. Hydrol. 610: 127980. DOI: https://doi.org/10.1016/j.jhydrol.2022.127980
Jarvis P.G., McNaughton K.G. 1986. Stomatal control of transpiration: Scaling up from leaf to region. In: MacFadyen A., Ford E.D. (Eds.) Advances in ecological research. Vol. 15, Academic Press, London, UK, pp. 1–49. doi: https://doi.org/10.1016/S0065-2504(08)60119-1 DOI: https://doi.org/10.1016/S0065-2504(08)60119-1
Jarvis P.G., Monteith J.L., Weatherley P.E. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. T. Roy. Soc. B. 273(927): 593–610. doi: 10.1098/rstb.1976.0035 DOI: https://doi.org/10.1098/rstb.1976.0035
Knight J.H. White I. Zegelin S.J. 1995. Sampling volume of TDR probes used for water content monitoring. Proc. Symp. Workshop on Time Domain Reflectometry in Env. Infrastruct. Min, Appl. Evanston, IL, USA, SP 19-94: 93-104
Li X., Yang P., Ren S., Li Y., Liu H., Du J., Li P., Wang C., Ren L. 2010. Modeling cherry orchard evapotranspiration based on an improved dual-source model. Agr. Water Manage. 98(1): 12–18. doi: https://doi.org/10.1016/j.agwat.2010.07.019 DOI: https://doi.org/10.1016/j.agwat.2010.07.019
Marino G., Pallozzi E., Cocozza C., Tognetti R., Giovannelli A., Cantini C., Centritto M. 2014. Assessing gas exchange, sap flow and water relations using tree canopy spectral reflectance indices in irrigated and rainfed Olea europaea L.. Environ. Exp. Bot. 99: 43-52. doi: https://doi.org/10.1016/j.envexpbot.2013.10.008 DOI: https://doi.org/10.1016/j.envexpbot.2013.10.008
Molz F.J. 1981. Models of water transport in the soil-plant system: A review. Water Resour. Res. 17(5): 1245–1260. doi: https://doi.org/10.1029/WR017i005p01245 DOI: https://doi.org/10.1029/WR017i005p01245
Monteith J., Unsworth M. 2013. Principles of environmental physics: plants, animals, and the atmosphere. 4th ed. Academic Press, Oxford, UK.
Mu Q., Zhao M., Running S.W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115(8): 1781–1800. doi: https://doi.org/10.1016/j.rse.2011.02.019 DOI: https://doi.org/10.1016/j.rse.2011.02.019
Parkinson K.J. 1983. Porometry in S.E.B. Symp. instrumentation for environmental physiology, Cambridge, UK.
PP Systems. 2017. CIRAS-3 Portable photosynthesis system operation manual. Version 1. PP Systems, Amesbury, Massachusetts, US.
Roose T., Fowler A.C. 2004. A model for water uptake by plant roots. J. Theor. Biol. 228(2): 155–171. doi: https://doi.org/10.1016/j.jtbi.2003.12.012 DOI: https://doi.org/10.1016/j.jtbi.2003.12.012
Rudich J., Kalmar D., Geizenberg C. and Harel S. 1977. Low water tensions in defined growth stages of processing tomato plants and their effects on yield and quality. J. Hortic. Sci. 52(3): 391–399. doi: 10.1080/00221589.1977.11514768 DOI: https://doi.org/10.1080/00221589.1977.11514768
Russo D., 1988. Determining soil hydraulic properties by parameter estimation: On the selection of a model for the hydraulic properties. Water Resour. Res. 24(3): 453-459. DOI: https://doi.org/10.1029/WR024i003p00453
Schaap M.G., Robinson D.A., Friedman S.P., Lazar A. 2003. Measurement and modeling of the TDR signal propagation through layered dielectric media. Soil Sci. Soc. Am. J. 61(4): 1113-1121. DOI: https://doi.org/10.2136/sssaj2003.1113
Schröder T., Javaux M., Vanderborght J., Körfgen B., Vereecken H. 2008. Effect of local soil hydraulic conductivity drop using a three-dimensional root water uptake model. Vadose Zone J. 7(3): 1089–1098. doi: https://doi.org/10.2136/vzj2007.0114 DOI: https://doi.org/10.2136/vzj2007.0114
Severino G., Coppola A. 2013. A note on the apparent conductivity of stratified porous media in unsaturated steady flow above a water table. Transp. Porous Med. 91(2): 733-740. https://doi.org/10.1007/s11242-011-9870-2 DOI: https://doi.org/10.1007/s11242-011-9870-2
Shuttleworth W.J. 2007. Putting the ‘vap’ into evaporation. Hydrol. Earth Syst. Sc. 11(1): 210–244. doi: 10.5194/hess-11-210-2007 DOI: https://doi.org/10.5194/hess-11-210-2007
Shuttleworth W.J., Wallace J.S. 1985. Evaporation from sparse crops-an energy combination theory. Q. J. Roy. Meteor. Soc. 111(469): 839–855. doi: https://doi.org/10.1002/qj.49711146910 DOI: https://doi.org/10.1002/qj.49711146910
Sillo F., Marino G., Franchi E., Haworth M., Zampieri E., Pietrini I., Fusini D., Mennone C., Centritto M., Balestrini R. 2022. Impact of irrigation water deficit on two tomato genotypes grown under open field conditions: From the root-associated microbiota to the stress responses. Ital. J. Agron. 17(3): 2130. doi: https://doi.org/10.4081/ija.2022.2130 DOI: https://doi.org/10.4081/ija.2022.2130
Šimůnek J., van Genuchten M.T. 1996. Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour. Res. 32(9): 2683-2696. DOI: https://doi.org/10.1029/96WR01525
Šimůnek J., van Genuchten M.T., Šejna M. 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J. 7(2): 587–600. doi: 10.2136/vzj2007.0077 DOI: https://doi.org/10.2136/vzj2007.0077
Topp, G.C., Ferré, P.A. 2002. The soil solution phase. In: Dane J.H., Topp G.C., Campbell, G.S. (Eds.) Methods of soil analysis. Part 4. Physical methods. SSSA Book series No. 5, Madison, WI, USA, pp. 417-545.
van Dam J.C., Huygen J., Wesseling J.G., Feddes R.A., Kabat P., van Walsum P.E. V, Groenendijk P., van Diepen C.A. 1997. Theory of SWAP version 2.0; Simulation of water flow, solute transport and plant growth in the soil-water-atmosphere-plant environment. Technical Doc. 45. Wageningen Agricultural University and DLO Winand Staring Centre. Wageningen, The Netherlands
van Genuchten M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5): 892–898. doi: https://doi.org/10.2136/sssaj1980.03615995004400050002x DOI: https://doi.org/10.2136/sssaj1980.03615995004400050002x
von Caemmerer S., Farquhar G.D. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta. 153(4): 376–387. doi: 10.1007/BF00384257 DOI: https://doi.org/10.1007/BF00384257
Warrick A.W. 1974. Time-dependent linearized infiltration. I. Point sources. Soil Sci. Soc. Am. J. 38 (3): 383-386. doi: https://doi.org/10.2136/sssaj1974.03615995003800030008x DOI: https://doi.org/10.2136/sssaj1974.03615995003800030008x
Williams M., Rastetter E.B., Fernandes D.N., Goulden M.L., Wofsy S.C., Shaver G.R., Melillo J.M., Munger J.W., Fa S.M., Nadelhoffer K.J. 1996. Modelling the soil-plant-atmosphere continuum in a Quercus–Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant, Cell & Environ. 19(8): 911–927. doi: https://doi.org/10.1111/j.1365-3040.1996.tb00456.x DOI: https://doi.org/10.1111/j.1365-3040.1996.tb00456.x

How to Cite

Sobhani, A. (2023) “Comparing actual transpiration fluxes as measured at leaf-scale and calculated by a physically based agro-hydrological model”, Journal of Agricultural Engineering, 54(3). doi: 10.4081/jae.2023.1527.

Similar Articles

<< < 34 35 36 37 38 39 40 41 42 43 > >> 

You may also start an advanced similarity search for this article.