ArduHydro: a low-cost device for water level measurement and monitoring

Published: 23 January 2024
Abstract Views: 806
PDF: 581
HTML: 9
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In this paper, we present ArduHydro (AH), a low-cost device for water level measurement and monitoring designed for employment in controlled and outdoor environments. It measures the water level through an ultrasonic sensor and elaborates the signals through an Arduino microcontroller. The small size of this device, its robustness and accuracy make AH properly versatile for different applications in the field of water control and management. This article describes the design, the components, the costs, and the performance of AH. The performance was assessed with a laboratory test inside an open-channel flume and comparing AH measurements with those obtained with a traditional ultrasonic sensor. Furthermore, an example of AH application for detecting the wavefront evolution during surface irrigation of a maize crop is presented. The results revealed that AH measurements were, on average, very consistent with those obtained by the traditional ultrasonic sensor in all different flow conditions. The application of AH during a surface watering of an agricultural field allowed us to obtain important spatiotemporal information about the water depth along the longitudinal direction of the field, paying the way for a real comprehension of the dynamics of wavefront evolution in a real-world case study.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Baden, T., Chagas, A.M., Gage, G., Marzullo, T., Prieto-Godino, L.L., Euler, T., 2015. Open Labware: 3-D Printing Your Own Lab Equipment. PLoS Biol 13, 1–12. https://doi.org/10.1371/journal.pbio.1002086 DOI: https://doi.org/10.1371/journal.pbio.1002086
Braca, G., Bussettini, M., Ducci, D., Lastoria, B., Mariani, S., 2019. Evaluation of national and regional groundwater resources under climate change scenarios using a GIS-based water budget procedure. Rend Lincei Sci Fis Nat 30, 109–123. https://doi.org/10.1007/s12210-018-00757-6 DOI: https://doi.org/10.1007/s12210-018-00757-6
Chen, B., Ouyang, Z., Sun, Z., Wu, L., Li, F., 2013. Evaluation on the potential of improving border irrigation performance through border dimensions optimization: A case study on the irrigation districts along the lower Yellow River. Irrig Sci 31, 715–728. https://doi.org/10.1007/s00271-012-0338-0 DOI: https://doi.org/10.1007/s00271-012-0338-0
Cherqui, F., James, R., Poelsma, P., Burns, M.J., Szota, C., Fletcher, T., Bertrand-Krajewski, J.L., 2020. A platform and protocol to standardise the test and selection low-cost sensors for water level monitoring. H2Open Journal 3, 437–456. https://doi.org/10.2166/h2oj.2020.050 DOI: https://doi.org/10.2166/h2oj.2020.050
Chiaradia, E.A., Facchi, A., Masseroni, D., Ferrari, D., Bischetti, G.B., Gharsallah, O., Cesari de Maria, S., Rienzner, M., Naldi, E., Romani, M., Gandolfi, C., 2015. An integrated, multisensor system for the continuous monitoring of water dynamics in rice fields under different irrigation regimes. Environ Monit Assess 187. https://doi.org/10.1007/s10661-015-4796-8 DOI: https://doi.org/10.1007/s10661-015-4796-8
Costabile, P., Costanzo, C., Gangi, F., De Gaetani, C.I., Rossi, L., Gandolfi, C., Masseroni, D., 2023. High-resolution 2D modelling for simulating and improving the management of border irrigation. Agric Water Manag 275. https://doi.org/10.1016/j.agwat.2022.108042 DOI: https://doi.org/10.1016/j.agwat.2022.108042
Dawson, C.W., Abrahart, R.J., See, L.M., 2007. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ Model Softw 22, 1034–1052. https://doi.org/10.1016/j.envsoft.2006.06.008 DOI: https://doi.org/10.1016/j.envsoft.2006.06.008
Errico, A., Lama, G.F.C., Francalanci, S., Chirico, G.B., Solari, L., Preti, F., 2019. Flow dynamics and turbulence patterns in a drainage channel colonized by common reed (Phragmites australis) under different scenarios of vegetation management. Ecol Eng 133, 39–52. https://doi.org/10.1016/j.ecoleng.2019.04.016 DOI: https://doi.org/10.1016/j.ecoleng.2019.04.016
Ezenne, G.I., Okoro, G.O., 2019. Development of a low-cost automatic water level monitoring system. Agricultural Engineering International: CIGR Journal 21, 1–6.
Facchi, A., Masseroni, D., Miniotti, E.F., 2017. Self-made microlysimeters to measure soil evaporation: a test on aerobic rice in northern Italy. Paddy Water Environ 15, 669–680. https://doi.org/10.1007/s10333-016-0566-7 DOI: https://doi.org/10.1007/s10333-016-0566-7
Fisher, D.K., Fletcher, R.S., Anapalli, S.S., 2020. Evolving Open-Source Technologies Offer Options for Remote Sensing and Monitoring in Agriculture. Advances in Internet of Things 10, 1–10. https://doi.org/10.4236/ait.2020.101001 DOI: https://doi.org/10.4236/ait.2020.101001
Fisher, D.K., Gould, P.J., 2012. Open-Source Hardware Is a Low-Cost Alternative for Scientific Instrumentation and Research. Modern Instrumentation 01, 8–20. https://doi.org/10.4236/mi.2012.12002 DOI: https://doi.org/10.4236/mi.2012.12002
Gao, A., Wu, S., Wang, F., Wu, X., Xu, P., Yu, L., Zhu, S., 2019. A newly developed unmanned aerial vehicle (UAV) imagery based technology for field measurement of water level. Water 11. https://doi.org/10.3390/w11010124 DOI: https://doi.org/10.3390/w11010124
Harnett, C., 2011. Open source hardware for instrumentation and measurement. IEEE Instrum Meas Mag 14, 34–38. https://doi.org/10.1109/MIM.2011.5773535 DOI: https://doi.org/10.1109/MIM.2011.5773535
Herschy, R.W., 2009. Streamflow Measurement, 3rd ed. Taylor & Francis, New York, USA. DOI: https://doi.org/10.1201/9781482265880
Hilsenrath, J., Beckett, C.W., William, S.B., Fano, L., Hoge, H.J., Masi, J.F., Nuttall, R.L., Touloukian, Y.S., Woolley, H.W., 1955. Tables of Thermal Properties of Gases, Circular 5. ed. US Department of Commerce, National Bureau of Standards.
Hund, S. V., Johnson, M.S., Keddie, T., 2016. Developing a Hydrologic Monitoring Network in Data‐Scarce Regions Using Open‐Source Arduino Dataloggers. Agric Environ Lett 1, 160011. https://doi.org/10.2134/ael2016.02.0011 DOI: https://doi.org/10.2134/ael2016.02.0011
Ichikawa, K., Ebinuma, T., Konda, M., Yufu, K., 2019. Low-cost GNSS-R altimetry on a UAV for water-level measurements at arbitrary times and locations. Sensors 19. https://doi.org/10.3390/s19050998 DOI: https://doi.org/10.3390/s19050998
Illes, C., Popa, G.N., Filip, I., 2013. Water level control system using PLC and wireless sensors. ICCC 2013 - IEEE 9th International Conference on Computational Cybernetics, Proceedings 195–199. https://doi.org/10.1109/ICCCyb.2013.6617587 DOI: https://doi.org/10.1109/ICCCyb.2013.6617587
Kabi, J.N., wa Maina, C., Mharakurwa, E.T., Mathenge, S.W., 2023. Low cost, LoRa based river water level data acquisition system. HardwareX e00414. https://doi.org/10.1016/j.ohx.2023.e00414 DOI: https://doi.org/10.1016/j.ohx.2023.e00414
Karegar, M.A., Kusche, J., Geremia-Nievinski, F., Larson, K.M., 2022. Raspberry Pi Reflector (RPR): A Low-Cost Water-Level Monitoring System Based on GNSS Interferometric Reflectometry. Water Resour Res 58. https://doi.org/10.1029/2021WR031713 DOI: https://doi.org/10.1029/2021WR031713
Loizou, K., Koutroulis, E., 2016. Water level sensing: State of the art review and performance evaluation of a low-cost measurement system. Measurement 89, 204–214. https://doi.org/10.1016/j.measurement.2016.04.019 DOI: https://doi.org/10.1016/j.measurement.2016.04.019
Loizou, K., Koutroulis, E., Zalikas, D., Liontas, G., 2015. A low-cost sensor based on time-domain reflectometry for water level monitoring in environmental applications. 2015 IEEE 15th International Conference on Environment and Electrical Engineering, EEEIC 2015 - Conference Proceedings 261–266. https://doi.org/10.1109/EEEIC.2015.7165549 DOI: https://doi.org/10.1109/EEEIC.2015.7165549
Mao, F., Khamis, K., Krause, S., Clark, J., Hannah, D.M., 2019. Low-Cost Environmental Sensor Networks: Recent Advances and Future Directions. Front Earth Sci 7, 1–7. https://doi.org/10.3389/feart.2019.00221 DOI: https://doi.org/10.3389/feart.2019.00221
Marino, M., Rabionet, I.C., Musumeci, R.E., Foti, E., 2018. Reliability of Pressure Sensors To Measure Wave Height in the Shoaling Region. Proceedings of the 36th International Conference on Coastal Engineering 10. https://doi.org/10.9753/icce.v36.papers.10 DOI: https://doi.org/10.9753/icce.v36.papers.10
Masseroni, D., Castagna, A., Gandolfi, C., 2021. Evaluating the performances of a flexible mechanism of water diversion: application on a northern Italy gravity-driven irrigation channel. Irrig Sci 39, 363–373. https://doi.org/10.1007/s00271-020-00718-8 DOI: https://doi.org/10.1007/s00271-020-00718-8
Masseroni, D., Facchi, A., Depoli, E.V., Renga, F.M., Gandolfi, C., 2016. Irrig-OH: An Open-Hardware Device for Soil Water Potential Monitoring and Irrigation Management. Irrig Drain 65, 750–761. https://doi.org/10.1002/ird.1989 DOI: https://doi.org/10.1002/ird.1989
Masseroni, D., Gangi, F., Galli, A., Ceriani, R., De Gaetani, C., Gandolfi, C., 2022. Behind the efficiency of border irrigation: Lesson learned in Northern Italy. Agric Water Manag 269, 107717. https://doi.org/10.1016/j.agwat.2022.107717 DOI: https://doi.org/10.1016/j.agwat.2022.107717
Masseroni, D., Ricart, S., de Cartagena, F.R., Monserrat, J., Gonçalves, J.M., de Lima, I., Facchi, A., Sali, G., Gandolfi, C., 2017. Prospects for improving gravity-fed surface irrigation systems in mediterranean european contexts. Water 9. https://doi.org/10.3390/w9010020 DOI: https://doi.org/10.3390/w9010020
Montanari, A., Young, G., Savenije, H.H.G., Hughes, D., Wagener, T., Ren, L.L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S.J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D.A., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., Belyaev, V., 2013. “Panta Rhei-Everything Flows”: Change in hydrology and society-The IAHS Scientific Decade 2013-2022. Hydrol Sci J 58, 1256–1275. https://doi.org/10.1080/02626667.2013.809088 DOI: https://doi.org/10.1080/02626667.2013.809088
Noto, S., Tauro, F., Petroselli, A., Apollonio, C., Botter, G., Grimaldi, S., 2021. Technical Note: Low cost stage-camera system for continuous water level monitoring in ephemeral streams. Hydrol Earth Syst Sci Discuss 1–17. https://doi.org/10.5194/hess-2021-36 DOI: https://doi.org/10.5194/hess-2021-36
Pearce, J.M., 2012. Building research equipment with free, open-source hardware. Science (1979) 337, 1303–1304. https://doi.org/10.1126/science.1228183 DOI: https://doi.org/10.1126/science.1228183
Peli, M., Rapuzzi, C., Barontini, S., Ranzi, R., 2023. Application of Benfratello’s method to estimate the spatio-temporal variability of the irrigation deficit in a Mediterranean semiarid climate. Hydrol Res. https://doi.org/10.2166/nh.2023.081 DOI: https://doi.org/10.2166/nh.2023.081
Persi, E., Petaccia, G., Fenocchi, A., Manenti, S., Ghilardi, P., Sibilla, S., 2019. Hydrodynamic coefficients of yawed cylinders in open-channel flow. Flow Meas Instrum 65, 288–296. https://doi.org/10.1016/j.flowmeasinst.2019.01.006 DOI: https://doi.org/10.1016/j.flowmeasinst.2019.01.006
Peruzzi, C., Galli, A., Chiaradia, E.A., Masseroni, D., 2021a. Evaluating longitudinal dispersion of scalars in rural channels of agro-urban environments. Environ Fluid Mech 21, 925–954. https://doi.org/10.1007/s10652-021-09804-7 DOI: https://doi.org/10.1007/s10652-021-09804-7
Peruzzi, C., Poggi, D., Ridolfi, L., Manes, C., 2020. On the scaling of large-scale structures in smooth-bed turbulent open-channel flows. J Fluid Mech 889. https://doi.org/10.1017/jfm.2020.73 DOI: https://doi.org/10.1017/jfm.2020.73
Peruzzi, C., Vettori, D., Poggi, D., Blondeaux, P., Ridolfi, L., Manes, C., 2021b. On the influence of collinear surface waves on turbulence in smooth-bed open-channel flows. J Fluid Mech 924, 1–37. https://doi.org/10.1017/jfm.2021.605 DOI: https://doi.org/10.1017/jfm.2021.605
Purnell, D.J., Gomez, N., Minarik, W., Porter, D., Langston, G., 2021. Precise water level measurements using low-cost GNSS antenna arrays. Earth Surf Dyn 9, 673–685. https://doi.org/10.5194/esurf-9-673-2021 DOI: https://doi.org/10.5194/esurf-9-673-2021
Ravazzani, G., 2017. Open hardware portable dual-probe heat-pulse sensor for measuring soil thermal properties and water content. Comput Electron Agric 133, 9–14. https://doi.org/10.1016/j.compag.2016.12.012 DOI: https://doi.org/10.1016/j.compag.2016.12.012
Rosolem, J.B., Dini, D.C., Penze, R.S., Floridia, C., Leonardi, A.A., Loichate, M.D., Durelli, A.S., 2013. Fiber optic bending sensor for water level monitoring: Development and field test: A review. IEEE Sens J 13, 4113–4120. https://doi.org/10.1109/JSEN.2013.2278074 DOI: https://doi.org/10.1109/JSEN.2013.2278074
Salahou, M.K., Jiao, X., Lü, H., 2018. Border irrigation performance with distance-based cut-off. Agric Water Manag 201, 27–37. https://doi.org/10.1016/j.agwat.2018.01.014 DOI: https://doi.org/10.1016/j.agwat.2018.01.014
Schoener, G., 2018. Time-Lapse Photography: Low-Cost, Low-Tech Alternative for Monitoring Flow Depth. J Hydrol Eng 23, 06017007. https://doi.org/10.1061/(asce)he.1943-5584.0001616 DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001616
Shen, J., 1981. Discharge Characteristics of Triangular-Notch Thin-Plate Weirs., US Geological Survey Water Supply Paper. https://doi.org/10.3133/wsp1617B DOI: https://doi.org/10.3133/wsp1617B
Takken, I., Govers, G., 2000. Hydraulics of interrill overland flow on rough, bare soil surfaces. Earth Surf Process Landf 25, 1387–1402. https://doi.org/10.1002/1096-9837(200012)25:13<1387::AID-ESP135>3.0.CO;2-D DOI: https://doi.org/10.1002/1096-9837(200012)25:13<1387::AID-ESP135>3.3.CO;2-4
Tauro, F., Selker, J., Van De Giesen, N., Abrate, T., Uijlenhoet, R., Porfiri, M., Manfreda, S., Caylor, K., Moramarco, T., Benveniste, J., Ciraolo, G., Estes, L., Domeneghetti, A., Perks, M.T., Corbari, C., Rabiei, E., Ravazzani, G., Bogena, H., Harfouche, A., Broccai, L., Maltese, A., Wickert, A., Tarpanelli, A., Good, S., Lopez Alcala, J.M., Petroselli, A., Cudennec, C., Blume, T., Hut, R., Grimaldia, S., 2018. Measurements and observations in the XXI century (MOXXI): Innovation and multi-disciplinarity to sense the hydrological cycle. Hydrol Sci J 63, 169–196. https://doi.org/10.1080/02626667.2017.1420191 DOI: https://doi.org/10.1080/02626667.2017.1420191
Toran, L., 2016. Water level loggers as a low-cost tool for monitoring of stormwater control measures. Water 8. https://doi.org/10.3390/w8080346 DOI: https://doi.org/10.3390/w8080346
Tscheikner-Gratl, F., Caradot, N., Cherqui, F., Leitão, J.P., Ahmadi, M., Langeveld, J.G., Le Gat, Y., Scholten, L., Roghani, B., Rodríguez, J.P., Lepot, M., Stegeman, B., Heinrichsen, A., Kropp, I., Kerres, K., Almeida, M. do C., Bach, P.M., Moy de Vitry, M., Sá Marques, A., Simões, N.E., Rouault, P., Hernandez, N., Torres, A., Werey, C., Rulleau, B., Clemens, F., 2019. Sewer asset management–state of the art and research needs. Urban Water J 16, 662–675. https://doi.org/10.1080/1573062X.2020.1713382 DOI: https://doi.org/10.1080/1573062X.2020.1713382
Vijay Hari Ram, V., Vishal, H., Dhanalakshmi, S., Meenakshi Vidya, P., 2015. Regulation of water in agriculture field using Internet Of Things. Proceedings - 2015 IEEE International Conference on Technological Innovations in ICT for Agriculture and Rural Development, TIAR 2015 112–115. https://doi.org/10.1109/TIAR.2015.7358541 DOI: https://doi.org/10.1109/TIAR.2015.7358541
Wickert, A.D., Sandell, C.T., Schulz, B., Ng, G.H.C., 2019. Open-source Arduino-compatible data loggers designed for field research. Hydrol Earth Syst Sci 23, 2065–2076. https://doi.org/10.5194/hess-23-2065-2019 DOI: https://doi.org/10.5194/hess-23-2065-2019
Wong, G.S.K., Embleton, T.F., 1985. Variation of the speed of sound in air with humidity and temperature. J Acoust Soc Am 77, 1710–1712. https://doi.org/10.1121/1.391918 DOI: https://doi.org/10.1121/1.391918
Zhang, G., Valero, D., Bung, D.B., Chanson, H., 2018. On the estimation of free-surface turbulence using ultrasonic sensors. Flow Meas Instrum 60, 171–184. https://doi.org/10.1016/j.flowmeasinst.2018.02.009 DOI: https://doi.org/10.1016/j.flowmeasinst.2018.02.009
Zhang, Z., Zhou, Y., Liu, H., Gao, H., 2019. In-situ water level measurement using NIR-imaging video camera. Flow Meas Instrum 67, 95–106. https://doi.org/10.1016/j.flowmeasinst.2019.04.004 DOI: https://doi.org/10.1016/j.flowmeasinst.2019.04.004

How to Cite

Galli, A. (2024) “ArduHydro: a low-cost device for water level measurement and monitoring”, Journal of Agricultural Engineering, 55(1). doi: 10.4081/jae.2024.1554.

Similar Articles

<< < 47 48 49 50 51 52 53 > >> 

You may also start an advanced similarity search for this article.