Dynamic neural network modeling of thermal environments of two adjacent single-span greenhouses with different thermal curtain positions

Published: 20 February 2024
Abstract Views: 2188
PDF: 112
SUPPLEMENTARY MATERIAL: 11
HTML: 6
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Scientific methods must be used to forecast the greenhouse microclimate, which is influenced by crop management practices and the surrounding macroclimate, in order to produce a marketable yield. Using input parameters like indoor air temperature, relative humidity, solar radiation, indoor roof temperature, and indoor relative humidity, the MATLAB tool NARX was utilized in this study to predict the strawberry yield, indoor air temperature, relative humidity, and vapor pressure deficit. To increase the model’s accuracy, the data were normalized. The Levenberg-Marquardt backpropagation algorithm was used to develop the model. A number of evaluation metrics, including the coefficient of determination, mean square error, root mean square error, mean absolute deviation, and Nash-Sutcliffe efficiency coefficient, were used to assess the models’ accuracy. The outcomes demonstrated a high degree of accuracy of the models, with no discernible variation between the experimental and predicted values. It was discovered that the vapor pressure deficit model was the most significant since it affects crop metabolic activities and its precision can be utilized as a parameter for indoor climate control.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abd-El Baky, H.M., Ali, S.A., El Haddad, Z.A., El Ansary, M.Y. 2004. Some environmental parameters affecting sweet pepper growth and productivity under different greenhouse forms in hot and humid climatic conditions. Mansoura Univ. J. Soil Sci. Agric. Eng. 1:225-47.
Adesanya, M.A., Na, W.H., Rabiu, A., Ogunlowo, Q.O., Akpenpuun, T.D., Rasheed, A., Yoon, Y. C., Lee., H.W. 2022. TRNSYS simulation and experimental validation of internal temperature and heating demand in a glass greenhouse. Sustainability. 14:8286.
Akpenpuun, T.D., Mijinyawa, Y. 2020. Impact of a split-gable greenhouse microclimate on the yield of irish potato (solanum tuberosum l.) under tropical conditions. J. Agric. Eng. Technol. 25:54-78.
Akpenpuun, T.D., Ogunlowo, Q.O., Rabiu, A., Adesanya, M.A., Na, W.H., Omobowale, M.O., Mijinyawa, Y., Lee, H.W. 2022. Building energy simulation model application to greenhouse microclimate, covering material and thermal blanket modelling: A Review. Nigerian J. Technol. Dev. 19:276-86.
Azaza, M., Echaieb, K., Tadeo, F., Fabrizio, E., Iqbal, A., Mami, A. 2015. Fuzzy decoupling control of greenhouse climate. Arabian J. Sci. Eng. 40:2805-12.
Dariouchy, A., Aassif, E., Lekouch, K., Bouirden, L., Maze, G. 2009. Prediction of the intern parameters tomato greenhouse in a semiarid area using a time-series model of artificial neural networks. Measurement. 42:456-63.
Escamilla-García, A., Soto-Zarazúa, G. M., Toledano-Ayala, M., Rivas-Araiza, E., Gastélum-Barrios, A. 2020. Applications of artificial neural networks in greenhouse technology and overview for smart agriculture development. Appl. Sci. 10:3835.
Fitz-Rodríguez, E., Kubota, C., Giacomelli, G.A., Tignor, M.E., Wilson, S.B., McMahon, M. 2010. Dynamic modeling and simulation of greenhouse environments under several scenarios: a webbased application. Comput. Electron. Agric. 70:105-16.
Frausto, H.U., Pieters, J.G. 2004. Modelling greenhouse temperature using system identification by means of neural networks. Neurocomputing. 56:423-28.
Frausto, H.U., Pieters, J.G., Deltour, J.M. 2003. Modelling greenhouse temperature by means of auto regressive models. Biosyst. Eng. 84:147-57.
Gorjian, S., Calise, F., Kant, K., Ahamed, M.S., Copertaro, B., Najafi, G., Zhang, X., Aghaei, M., Shamshiri, R.R. 2020. A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. J. Clean. Product. 285:124807.
Hongkang, W., Li, L., Yong, W., Fanjia, M., Haihua, W., Sigrimis, N.A. 2018. Recurrent neural network model for prediction of microclimate in solar greenhouse. IFAC-PapersOnLine. 51:790-95.
Hu, H.G., Xu, L.H., Wei, R.H., Zhu, B.K. 2011. RBF network based nonlinear model reference adaptive pd controller design for greenhouse climate. Int. J. Advance. Comput. Technol. 3:357-66.
Khashei, M., Bijari, M. 2010. An artificial neural network (p, d, q) model for time series forecasting. Expert Syst. Appl. 37:479-89.
Kozai, T., Kubota, C., Kitaya, Y. 1997. Greenhouse technology for saving the earth in the 21st century. Paper presented at the Plant production in closed ecosystems. In: Plant production in closed ecosystems. Narita, Japan; pp. 139-52.
Moon, T.W., Jung, D.H., Chang, S.H., ì Son, J.E. 2018. Estimation of greenhouse co2 concentration via an artificial neural network that uses environmental factors. Horticult. Environ. Biotechnol. 59:45-50.
Ogunlowo, Q.O., Na, W.H., Rabiu, A., Adesanya, M.A., Akpenpuun, T.D., Kim, H.T., Lee, H.W. 2022. Effect of envelope characteristics on the accuracy of discretized TRNSYS building energy simulation model. J. Agric. Eng. 53:1420.
Owolabi, A.B., Lee, J.W., Jayasekara, S.N., Lee, H.W. 2017. Predicting the greenhouse air humidity using artificial neural network model based on principal components analysis. J. Korean Soc. Agric. Eng. 59:93-9.
Petrakis, T., Kavga, A., Thomopoulos, V., Argiriou, A.A. 2022. Neural Network model for greenhouse microclimate predictions. Agriculture. 12:780.
Rabiu, A., Na, W., Akpenpuun, T.D., Rasheed, A., Adesanya, M.A., Ogunlowo, Q.O., Kim, H.T., Lee, H.W. 2022. Determination of overall heat transfer coefficient of greenhouse energy-saving screens using TRNSYS and hotbox methods. Biosyst. Eng. 217:83-101.
Russo, G., Anifantis, A.S., Verdiani, G., Mugnozza, G.S. 2014. Environmental analysis of geothermal heat pump and LPG greenhouse heating systems. Biosyst. Eng. 127:11-23.
Seginer, I., Boulard, T., B.J. Bailey 1994.Neural network models of the greenhouse climate. Journal of Agricultural Engineering Research. 59:203-16.
Shamshiri, R.R., Kalantari, F., Ting, K.C., Thorp, K.R., Hameed, I.A., Weltzien, C., Ahmad, D., Shad, Z.M. 2018. Advances in greenhouse automation and controlled environment agriculture: a transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 11:1-22.
Singh, V.K., Tiwari, K.N. 2017. Prediction of greenhouse micro-climate using artificial neural network. Appl. Ecol. Environ. Res. 15:767-78.
Su, Y., Xu, L. 2017. Towards discrete time model for greenhouse climate control. Eng. Agric. Environ. Food. 10:157-70.
Taki, M., Ajabshirchi, Y., Ranjbar, S.F., Matloobi, M. 2016. Application of neural networks and multiple regression models in greenhouse climate estimation. Agric. Eng. Int. CIGR J. 18:29-43.
Uyeh, D.D., Bassey, B.I., Mallipeddi, R., Asem-Hiablie, S., Amaizu, M., Woo, S., Ha, Y. 2021a. A reinforcement learning approach for optimal placement of sensors in protected cultivation systems. IEEE Access. 9:100781-800.
Uyeh, D.D., Pamulapati, T., Mallipeddi, R., Park, T., Woo, S., Lee, S., Lee, J., Ha, Y. 2021b. An evolutionary approach to robot scheduling in protected cultivation systems for uninterrupted and maximization of working time. Comput. Electron. Agric. 187:106231.
Zakir, E., Ogunlowo, Q.O., Akpenpuun, T.D., Na, W.H., Adesanya, M.A., Rabiu, A., Adedeji, O.S., Kim, H.T., Lee, H.W. 2022. Effect of thermal screen position on greenhouse microclimate and impact on crop growth and yield. Nigerian J. Technol. Dev. 19:417-32.
Zeng, S., Hu, H., Xu, L., Li, G. 2012. Nonlinear adaptive pid control for greenhouse environment based on rbf network. Sensors. 12:5328-48.

How to Cite

Akpenpuun, T. D. (2024) “Dynamic neural network modeling of thermal environments of two adjacent single-span greenhouses with different thermal curtain positions”, Journal of Agricultural Engineering, 55(2). doi: 10.4081/jae.2024.1563.

Similar Articles

<< < 22 23 24 25 26 27 28 29 30 31 > >> 

You may also start an advanced similarity search for this article.