See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Dynamic neural network modeling of thermal environments of two adjacent single-span greenhouses with different thermal curtain positions
Scientific methods must be used to forecast the greenhouse microclimate, which is influenced by crop management practices and the surrounding macroclimate, in order to produce a marketable yield. Using input parameters like indoor air temperature, relative humidity, solar radiation, indoor roof temperature, and indoor relative humidity, the MATLAB tool NARX was utilized in this study to predict the strawberry yield, indoor air temperature, relative humidity, and vapor pressure deficit. To increase the model’s accuracy, the data were normalized. The Levenberg-Marquardt backpropagation algorithm was used to develop the model. A number of evaluation metrics, including the coefficient of determination, mean square error, root mean square error, mean absolute deviation, and Nash-Sutcliffe efficiency coefficient, were used to assess the models’ accuracy. The outcomes demonstrated a high degree of accuracy of the models, with no discernible variation between the experimental and predicted values. It was discovered that the vapor pressure deficit model was the most significant since it affects crop metabolic activities and its precision can be utilized as a parameter for indoor climate control.
Downloads
How to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.