See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Zanthoxylum infructescence detection based on adaptive density clustering
To determine the Zanthoxylum yield, infructescence detection during the early fruiting stage is a prerequisite. The purpose of this research is to determine and quantify the infructescences on photos of Zanthoxylum’s early fruit-bearing branches that are gathered in their natural habitat. Consequently, a two-phase machine vision-based algorithm for identifying Zanthoxylum infructescences is proposed. First, the fruits of Zanthoxylum infructescences are extracted by extracting the histogram of oriented gradient (HOG) feature map and excess green minus excess red (ExGR) index from the branch image of the plant. The second involves roughly and adaptively classifying fruits based on the density of their position distribution. Rough clusters are then combined using an optimization model to produce the best possible clustering outcome. Experiments with normal samples demonstrate that the proposed approach receives a precision of 96.67%, a Recall of 91.07%, and an F1-score of 0.93. Compared to ADPCkNN, DBSCAN, and OPTICS algorithms, the suggested algorithm performs better in robustness and attains a higher F1-score and recall. In the meantime, its competitiveness is demonstrated in the deep learning-based method experiments. The tests demonstrate its efficacy in adaptively detecting the infructescences of branch images of Zanthoxylum.
Downloads
How to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.