Detection of early collision and compression bruises for pears based on hyperspectral imaging technology

Published: 9 July 2024
Abstract Views: 139
PDF: 109
HTML: 0
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Early detection of bruising is one of the major challenges in postharvest quality sorting processes for pears. In this study, visible/near infrared (VIS/NIR) hyperspectral imaging (400–1000 nm) was utilized for early detection of pear bruise type and timing (1, 12, and 24 h post-bruise). Spectral images of nonbruised and mechanically bruised pears (collision and compression) were captured at these intervals for modeling. Spectral data was processed using principal component analysis (PCA) and uninformative variable elimination (UVE) to select optimum wavelengths. Classification models were then built using an extreme learning machine (ELM) and support vector machine (SVM), and compared with a model combining genetic algorithm, sooty tern optimization algorithm, and SVM (STOA-GA-SVM). For PCA-ELM, UVE-ELM, PCA-SVM, and UVE-SVM models, the calibration set accuracies were 98.99%, 98.98%, 96.94%, and 99.23% respectively. And the validation set accuracies were 89.29%, 87.97%, 88.78%, and 88.78% respectively. The STOA-GA-SVM model shows the best performance, and the accuracy of the calibration set and validation set is determined to be 97.19% and 92.86%, respectively. This study shows that the use of the VIS/NIR hyperspectral imaging technique combined with the STOA-GA-SVM algorithm is feasible for the rapid and nondestructive identification of the bruise type and time for pears.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Crossref
Scopus
Google Scholar
Europe PMC
Abbott, J. A., Lu RenFu, L. R., Upchurch, B. L., Stroshine, R. L. 1997. Technologies for nondestructive quality evaluation of fruits and vegetables. DOI: https://doi.org/10.1002/9780470650646.ch1
Arango, J. D., Staar, B., Baig, A. M., Freitag, M. 2021. Quality control of apples by means of convolutional neural networks - Comparison of bruise detection by color images and near-infrared images. Procedia CIRP, 99: 290-294. DOI: https://doi.org/10.1016/j.procir.2021.03.043
Dong, J., Guo, W., Wang, Z., Liu, D., Zhao, F. 2015. Nondestructive Determination of Soluble Solids Content of ‘Fuji’ Apples Produced in Different Areas and Bagged with Different Materials During Ripening. Food Analytical Methods, 9(5): 1087-1095. DOI: https://doi.org/10.1007/s12161-015-0278-4
ElMasry, G., Wang, N., Vigneault, C., Qiao, J., ElSayed, A. 2008. Early detection of apple bruises on different background colors using hyperspectral imaging. LWT - Food Science and Technology, 41(2): 337-345. DOI: https://doi.org/10.1016/j.lwt.2007.02.022
Fan, S., Li, C., Huang, W., Chen, L. 2017. Detection of blueberry internal bruising over time using NIR hyperspectral reflectance imaging with optimum wavelengths. Postharvest Biology and Technology, 134: 55-66. DOI: https://doi.org/10.1016/j.postharvbio.2017.08.012
Fang, Y., Yang, F., Zhou, Z., Lin, L., Li, X. 2019. Hyperspectral Wavelength Selection and Integration for Bruise Detection of Korla Pears. Journal of Spectroscopy, 2019. DOI: https://doi.org/10.1155/2019/6715247
Fu, X., Wang, M. 2022. Detection of Early Bruises on Pears Using Fluorescence Hyperspectral Imaging Technique. Food Analytical Methods, 15(1): 115-123. DOI: https://doi.org/10.1007/s12161-021-02092-3
Gao, M., Guo, W., Huang, X., Du, R., Zhu, X. 2021. Effect of pressing and impacting bruises on optical properties of kiwifruit flesh. Postharvest Biology and Technology, 172: 111385. DOI: https://doi.org/10.1016/j.postharvbio.2020.111385
Guo, W., Gao, M., Cheng, J., Zhou, Y., Zhu, X. 2021. Effect of mechanical bruises on optical properties of mature peaches in the near-infrared wavelength range. Biosystems Engineering, 211: 114-124. DOI: https://doi.org/10.1016/j.biosystemseng.2021.09.002
Guo, W., Gu, J., Liu, D., Shang, L. 2016. Peach variety identification using near-infrared diffuse reflectance spectroscopy. Computers and Electronics in Agriculture, 123: 297-303. DOI: https://doi.org/10.1016/j.compag.2016.03.005
Hasnah Ar, N., Aris Purwanto, Y., Budiastra, I. W., Sobir. 2019. Prediction of soluble solid content, vitamin C, total acid and firmness in astringent persimmon (Diospyros kaki L.) cv. Rendeu using NIR spectroscopy. IOP Conference Series: Materials Science and Engineering, 557: 012086. DOI: https://doi.org/10.1088/1757-899X/557/1/012086
Huang, W., Li, J., Wang, Q., Chen, L. 2015. Development of a multispectral imaging system for online detection of bruises on apples. Journal of Food Engineering, 146: 62-71. DOI: https://doi.org/10.1016/j.jfoodeng.2014.09.002
Ji, Y., Sun, L., Li, Y., Ye, D. 2019. Detection of bruised potatoes using hyperspectral imaging technique based on discrete wavelet transform. Infrared Physics & Technology, 103: 103054. DOI: https://doi.org/10.1016/j.infrared.2019.103054
Jia, H., Li, Y., Sun, K. 2022. Simultaneous Feature Selection Optimization Based on Hybrid Sooty Tern Optimization Algorithm and Genetic Algorithm. Acta Automatica Sinica, 48(6): 1601-1615.
Jiang, H., Zhang, C., He, Y., Chen, X., Liu, F., Liu, Y. 2016. Wavelength Selection for Detection of Slight Bruises on Pears Based on Hyperspectral Imaging. Applied Sciences-Basel, 6(12). DOI: https://doi.org/10.3390/app6120450
Jie, D., Xie, L., Fu, X., Rao, X., Ying, Y. 2013. Variable selection for partial least squares analysis of soluble solids content in watermelon using near-infrared diffuse transmission technique. Journal Of Food Engineering, 118(4): 387-392. DOI: https://doi.org/10.1016/j.jfoodeng.2013.04.027
Lee, W.-H., Kim, M. S., Lee, H., Delwiche, S. R., Bae, H., Kim, D.-Y., Cho, B.-K. 2014. Hyperspectral near-infrared imaging for the detection of physical damages of pear. Journal of Food Engineering, 130: 1-7. DOI: https://doi.org/10.1016/j.jfoodeng.2013.12.032
Li, B., Yin, H., Liu, Y.-d., Zhang, F., Yang, A. k., Su, C.-t., Ou-yang, A.-g. 2022a. Detection storage time of mild bruise’s yellow peaches using the combined hyperspectral imaging and machine learning method. Journal of Analytical Science and Technology, 13(1): 24. DOI: https://doi.org/10.1186/s40543-022-00334-5
Li, B., Yin, H., Liu, Y.-d., Zhang, F., Yang, A. k., Su, C.-t., Ou-yang, A.-g. 2022b. Study on qualitative impact damage of yellow peaches using the combined hyperspectral and physicochemical indicators method. Journal of Molecular Structure, 1265: 133407. DOI: https://doi.org/10.1016/j.molstruc.2022.133407
Li, J., Chen, L., Huang, W. 2018. Detection of early bruises on peaches (Amygdalus persica L.) using hyperspectral imaging coupled with improved watershed segmentation algorithm. Postharvest Biology and Technology, 135: 104-113. DOI: https://doi.org/10.1016/j.postharvbio.2017.09.007
Li, J., Yan, J., Ritenour, M. A., Wang, J., Cao, J., Jiang, W. 2016. Effects of 1-methylcyclopropene on the physiological response of Yali pears to bruise damage. Scientia Horticulturae, 200: 137-142. DOI: https://doi.org/10.1016/j.scienta.2016.01.018
Li, X., Liu, Y., Jiang, X., Wang, G. 2021. Supervised classification of slightly bruised peaches with respect to the time after bruising by using hyperspectral imaging technology. Infrared Physics & Technology, 113: 103557. DOI: https://doi.org/10.1016/j.infrared.2020.103557
Li, Y., You, S., Wu, S., Wang, M., Song, J., Lan, W., . . . Pan, L. 2024. Exploring the limit of detection on early implicit bruised 'Korla' fragrant pears using hyperspectral imaging features and spectral variables. Postharvest Biology and Technology, 208. DOI: https://doi.org/10.1016/j.postharvbio.2023.112668
Liu, D., Li, Q., Li, W., Yang, B., Guo, W. 2017. Discriminating forchlorfenuron-treated kiwifruits using a portable spectrometer and Vis/NIR diffuse transmittance spectroscopy technology. Analytical Methods, 9(28): 4207-4214. DOI: https://doi.org/10.1039/C7AY00832E
Liu, D., Lv, F., Wang, C., Wang, G., Zhang, H., Guo, J. 2023. Classification of early mechanical damage over time in pears based on hyperspectral imaging and transfer learning. Journal of Food Science, 88(7): 3022-3035. DOI: https://doi.org/10.1111/1750-3841.16619
Liu, D. Y., Zhang, H. T., Lv, F., Tao, Y. R., Zhu, L. K. 2024. Combining transfer learning and hyperspectral imaging to identify bruises of pears across different bruise types. Journal of Food Science, 89(5): 2597-2610. DOI: https://doi.org/10.1111/1750-3841.17050
Maleki, M. R., Mouazen, A. M., Ramon, H., De Baerdemaeker, J. 2007. Multiplicative Scatter Correction during On-line Measurement with Near Infrared Spectroscopy. Biosystems Engineering, 96(3): 427-433. DOI: https://doi.org/10.1016/j.biosystemseng.2006.11.014
Nicolaï, B. M., Defraeye, T., De Ketelaere, B., Herremans, E., Hertog, M. L. A. T. M., Saeys, W., . . . Verboven, P. 2014. Nondestructive measurement of fruit and vegetable quality. Annual review of food science and technology, 5: 285-312. DOI: https://doi.org/10.1146/annurev-food-030713-092410
Opara, U. L., Pathare, P. B. 2014. Bruise damage measurement and analysis of fresh horticultural produce—A review. Postharvest Biology and Technology, 91: 9-24. DOI: https://doi.org/10.1016/j.postharvbio.2013.12.009
Rahman, A., Kandpal, L., Lohumi, S., Kim, M., Lee, H., Mo, C., Cho, B.-K. 2017. Nondestructive Estimation of Moisture Content, pH and Soluble Solid Contents in Intact Tomatoes Using Hyperspectral Imaging. Applied Sciences, 7(1): 109. DOI: https://doi.org/10.3390/app7010109
Stropek, Z., Gołacki, K. 2015. A new method for measuring impact related bruises in fruits. Postharvest Biology and Technology, 110: 131-139. DOI: https://doi.org/10.1016/j.postharvbio.2015.07.005
Su, C.-T., Li, B., Yin, H., Zou, J.-P., Zhang, F., Liu, Y.-D. 2022. Identification of Damage in Pear Using Hyperspectral Imaging Technology. Journal of Spectroscopy, 2022. DOI: https://doi.org/10.1155/2022/9094249
Thien Pham, Q., Liou, N.-S. 2022. The development of on-line surface defect detection system for jujubes based on hyperspectral images. Computers and Electronics in Agriculture, 194: 106743. DOI: https://doi.org/10.1016/j.compag.2022.106743
Xiao, D., Huang, J., Li, J., Fu, Y., Li, Z. 2022. Inversion study of cadmium content in soil based on reflection spectroscopy and MSC-ELM model. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 283: 121696. DOI: https://doi.org/10.1016/j.saa.2022.121696
Xing, J., De Baerdemaeker, J. 2005. Bruise detection on ‘Jonagold’ apples using hyperspectral imaging. Postharvest Biology and Technology, 37(2): 152-162. DOI: https://doi.org/10.1016/j.postharvbio.2005.02.015
Yang, J., Sun, L., Xing, W., Feng, G., Bai, H., Wang, J. 2021. Hyperspectral prediction of sugarbeet seed germination based on gauss kernel SVM. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 253: 119585. DOI: https://doi.org/10.1016/j.saa.2021.119585
Yuan, R., Guo, M., Li, C., Chen, S., Liu, G., He, J., . . . Fan, N. 2022. Detection of early bruises in jujubes based on reflectance, absorbance and Kubelka-Munk spectral data. Postharvest Biology and Technology, 185: 111810. DOI: https://doi.org/10.1016/j.postharvbio.2021.111810
Yuan, R., Liu, G., He, J., Wan, G., Fan, N., Li, Y., Sun, Y. 2021. Classification of Lingwu long jujube internal bruise over time based on visible near-infrared hyperspectral imaging combined with partial least squares-discriminant analysis. Computers and Electronics in Agriculture, 182: 106043. DOI: https://doi.org/10.1016/j.compag.2021.106043
Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., Liu, C. 2014. Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Research International, 62: 326-343. DOI: https://doi.org/10.1016/j.foodres.2014.03.012
Zhang, L., Sun, H., Li, H., Rao, Z., Ji, H. 2021. Identification of rice-weevil (Sitophilus oryzae L.) damaged wheat kernels using multi-angle NIR hyperspectral data. Journal of Cereal Science, 101: 103313. DOI: https://doi.org/10.1016/j.jcs.2021.103313

How to Cite

Wang, G., Wang, C. and Liu, D. (2024) “Detection of early collision and compression bruises for pears based on hyperspectral imaging technology”, Journal of Agricultural Engineering, 55(4). doi: 10.4081/jae.2024.1591.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.