Residual attention based multi-label learning for apple leaf disease identification
HTML: 1
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Authors
Recent studies suggest that plant disease identification via machine learning approach is vital for preventing the spread of diseases. Identifying multiple diseases simultaneous on a single leaf is one of the most irritating issues in agricultural production. However, the existing approaches are difficult to meet the requirements of production practice in accuracy or interpretability. Here, we present residual attention based multi-label learning framework (RAMDI), a method for predicting apple leaf diseases in natural environment. Built upon an attention based multi-label learning framework, the channel and spatial attention mechanisms are investigated and embedded in residual network for multi-label disease prediction, which takes advantage of channel-wise and spatial-wise attention weights. Experimental results indicate that the RAMDI achieves 0.976 accuracy, 0.986 F-score, and 0.979 mAPs, outperforms the existing state-of-the-art apple leaf disease identification models. RAMDI not only predicts multi-disease on a single leaf simultaneously, but also reveals the interpretability among positive predictions that contribute most to identify the key features that are significant for the leaf diseases. This method achieves the following two achievements. Firstly, it provides a solution for detecting multiple diseases on a single leaf. Secondly, this approach gains an interpretable understanding for apple leaf disease identification.
How to Cite
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.
Similar Articles
- Lucia P. Caliandro, Rosa V. Loisi, Pasquale Dal Sasso, Connections between masserie and historical roads system in Apulia , Journal of Agricultural Engineering: Vol. 45 No. 1 (2014)
You may also start an advanced similarity search for this article.