Agrivoltaic systems towards the European green deal and agricultural policies: a review

Published:11 November 2024
Abstract Views: 163
PDF: 60
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Excessive exploitation of natural resources has an environmental impact on ecosystems due to demographic and economic growth, and energy demand. For this reason, world economies have been implementing policy tools to achieve eco-friendly energy growth, minimizing environmental impact. It is necessary to increase Renewable Energies (RE) fraction in terms of electricity supply, improve energy efficiency and reduce energy consumption in greenhouses as well as in the agricultural sector. Thus, the European Green Deal (EGD) is a sustainable package of measures which, due to the ecological use of natural resources, strengthens the resilience of European food systems. The EGD’s objectives include: ensuring food security, reducing environmental impact, and supporting the farm to fork strategy and energy communities. The aim of this review is to present innovative energy technologies integrated with agrivoltaic systems to produce and utilize energy with eco-friendly methods. In this review, agrivoltaic systems were presented in the EGD perspective, since, as shown by several studies, they increase simultaneously clean energy production and crop yield, avoiding limitations in land use. As agrivoltaic systems produce energy by the installation of PV panels, an overview of PV technology was provided. PV panels can feed electricity to the power grid. Nowadays, since there are many impoverished rural areas which do not have access to electricity, a lot of projects have been developed that utilize power generation from microgrids combined with hybrid systems (e.g., wind and solar energy) to feed agricultural facilities or community buildings.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Crossref
Scopus
Google Scholar
Europe PMC
Aberle, A.G. 2009. Thin-film solar cells. Thin Solid Films 517:4706-410. DOI: https://doi.org/10.1016/j.tsf.2009.03.056
Aboagye, B., Gyamfi, S., Ofosu, E.A., Djordjevic, S. 2022. Investigation into the impacts of design, installation, operation and maintenance issues on performance and degradation of installed solar photovoltaic (PV) systems. Energy Sust. Dev. 66:165-76. DOI: https://doi.org/10.1016/j.esd.2021.12.003
Adeh, E.H., Good, S.P., Calaf, M., Higgins, C.W. 2019. Solar PV power potential is greatest over croplands. Sci. Rep. 9:11442. DOI: https://doi.org/10.1038/s41598-019-47803-3
Agostini, A., Colauzzi, M., Amaducci, S. 2021. Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Appl. Energy 281:116102. DOI: https://doi.org/10.1016/j.apenergy.2020.116102
Aira, J.R., Gallardo-Saavedra, S., Marcia, E.G., Gómez, V.A., Muñoz-García, M.A., Hernández-Callejo, L. 2021. Analysis of the viability of a photovoltaic greenhouse with semi-transparent amorphous silicon (A-si) glass. Agronomy (Basel) 11:1097. DOI: https://doi.org/10.3390/agronomy11061097
Alami, A.H., Hussien Rabaia M.K., Sayed E.T., Ramadan M., Abdelkareem M.A., Alasad S., Olabi A.G. 2022. Management of potential challenges of PV technology proliferation. Sustain. Ener. Tech. Assess. 51:101942. DOI: https://doi.org/10.1016/j.seta.2021.101942
Ali, A.O., Elmarghany, M.R., Abdelsalam, M.M., Sabry, M.N., Hamed, A.M. 2022. Closed-loop home energy management system with renewable energy sources in a smart grid: A comprehensive review. J. Ener. Stor. 50:104609. DOI: https://doi.org/10.1016/j.est.2022.104609
Allardyce, C.S., Fankhauser, C., Zakeeruddin, S.M., Grätzel, M., Dyson, P.J. 2017. The influence of greenhouse-integrated photovoltaics on crop production. Solar Energy 155:517-522. DOI: https://doi.org/10.1016/j.solener.2017.06.044
Al-Naemi, S., Al-Otoom, A. 2023. Smart sustainable greenhouses utilizing microcontroller and IOT in the GCC countries; energy requirements & economical analyses study for a concept model in the state of Qatar. Results Engin. 17:100889. DOI: https://doi.org/10.1016/j.rineng.2023.100889
Badji, A., Benseddik, A., Bensaha, H., Boukhelifa, A., Hasrane I. 2022. Design, technology, and management of greenhouse: A review. J. Clean Prod. 373:133753. DOI: https://doi.org/10.1016/j.jclepro.2022.133753
Bahiraei, M., Mazaheri, N., Hanooni, M. 2022. Employing a novel crimped-spiral rib inside a triple-tube heat exchanger working with a nanofluid for solar thermal applications: Irreversibility characteristics. Sust. Energy Tech. Assess. 52:102080. DOI: https://doi.org/10.1016/j.seta.2022.102080
Baquedano, F.G., Scott, S.G. 2020. Economic and food security impacts of agricultural input reduction under the European Union Green Deal’ s farm to fork and biodiversity strategies. Available from: https://www.ers.usda.gov/publications/pub-details/?pubid=99740
Barreca, F. 2024. Sustainability in food production: a high-efficiency offshore greenhouse. Agronomy (Basel) 14:518. DOI: https://doi.org/10.3390/agronomy14030518
Baxevanou, C., Fidaros, D., Katsoulas, N., Mekeridis E., Varlamis C., Zachariadis A., Logothetidis, S. 2020. Simulation of radiation and crop activity in a greenhouse covered with semitransparent organic photovoltaics. Appl. Sci. (Basel) 10:2550. DOI: https://doi.org/10.3390/app10072550
Benni, S., Barbaresi, A., Tinti, F., Bovo, M., Torreggiani, D., Santolini, E., Tassinari, P., 2023. Decarbonizing livestock structures : retrofit of a pig barn using renewable sources. Proc. XX CIGR World Congress 2022.
Bermel, P., Yazawa, K., Gray, J.L., Xu, X., Shakouri, A. 2016. Hybrid strategies and technologies for full spectrum solar conversion. Energy Environ. Sci. 9:2776–2788. DOI: https://doi.org/10.1039/C6EE01386D
Bhandari, S.N., Schlüter, S., Kuckshinrichs, W., Bhandari, R., Schlör, H., Adamou, R. 2021. Economic feasibility of agrivoltaic systems in food-energy nexus context: Modelling and a case study in niger. Agronomy (Basel) 11:1906. DOI: https://doi.org/10.3390/agronomy11101906
Bigerna, S., Bollino, C., Ciferri, D., Polinori, P. 2017. Renewables diffusion and contagion effect in Italian regional electricity markets: Assessment and policy implications. Renew. Sust. Energ. Rev. 68:199-211. DOI: https://doi.org/10.1016/j.rser.2016.09.119
Bouadila, S., Baddadi, S., Ali, R.B., Ayed, R., Skouri, S. 2023. Deploying low-carbon energy technologies in soilless vertical agricultural greenhouses in Tunisia. Thermal Sci. Eng. Progr. 42:101896. DOI: https://doi.org/10.1016/j.tsep.2023.101896
Briassoulis, D., Waaijenberg, D., Gratraud, J., von Eslner, B. 1997. Mechanical properties of covering materials for greenhouses: Part 1, general overview. J. Agr. Eng. Res. 67:81-96. DOI: https://doi.org/10.1006/jaer.1997.0154
Campana, P., Stridh, B., Hörndahl, T., Svensson, S., Zainali, S., Lu, S., et al. 2024. Experimental results, integrated model validation, and economic aspects of agrivoltaic systems at northern latitudes. J. Clean. Prod. 437:140235. DOI: https://doi.org/10.1016/j.jclepro.2023.140235
Canessa, C., Ait-sidhoum, A., Wunder, S., Sauer, J. 2024. What matters most in determining European farmers’ participation in agri-environmental measures? A systematic review of the quantitative literature. Land Use Pol. 140:107094. DOI: https://doi.org/10.1016/j.landusepol.2024.107094
Chae, S.H., Kim, H.J., Moon, H.W., Kim, Y.H., Ku, K.M. 2022. Agrivoltaic systems enhance farmers’ profits through broccoli visual quality and electricity production without dramatic changes in yield, antioxidant capacity, and glucosinolates. Agronomy (Basel) 12:1415. DOI: https://doi.org/10.3390/agronomy12061415
Chaurasia, A.R. 2020. Future population growth, 2015-2100. In: A.R. Chaurasia (ed.), Population and sustainable development in India. Singapore, Springer. pp. 35-49. DOI: https://doi.org/10.1007/978-981-32-9212-3_3
Choi, C.S., Ravi, S., Siregar, I. Z., Dwiyanti, F.G., Macknick, J., Elchinger, M., Davatzes, N. 2021. Combined land use of solar infrastructure and agriculture for socioeconomic and environmental co-benefits in the tropics. Renew. Sust. Energ. Rev. 151:111610. DOI: https://doi.org/10.1016/j.rser.2021.111610
Ciocia, A., Enescu, D., Amato, A., Malgaroli, G., Polacco, R., Amico, F., Spertino, F. 2022. Agrivoltaic system: a case study of PV production and olive cultivation in Southern Italy. Proc. 57th Int. Univ. Power Engineering Conference (UPEC. pp. 1-6. DOI: https://doi.org/10.1109/UPEC55022.2022.9917595
Cossu, M., Murgia, L., Caria, M., Pazzona, A. 2010. Economic feasibility study of semitransparent photovoltaic technology integrated on greenhouse covering structures. Proc. In. Conf. Ragusa SHWA2010 2010 Work Safety and Risk Prevention in Agro-food and Forest Systems.
Costa, Y. 2021. [Tecnologie green: pannelli LSC per la crescita di vegetali in serra].[Article in Italian]. Available from: https://www.foodandtec.com/n/tecnologie-green-pannelli-lsc-per-la-crescita-di-vegetali-in-serra
D’Cunha, S.D. 2018. Modi announces ‘100% Village Electrification’, but 31 million Indian homes are still in the dark. The Forbes [Internet]. Available from: https://www.forbes.com/sites/suparnadutt/2018/05/07/modi-announces-100-village-electrification-but-31-million-homes-are-still-in-the-dark/?sh=3b0da11063ba
Detweiler, A.M., Mioni, C.E., Hellier, K.L., Allen, J.J., Carter, S.A., Bebout, B.M., et al. 2015. Evaluation of wavelength selective photovoltaic panels on microalgae growth and photosynthetic efficiency. Algal Res. 9:170-177. DOI: https://doi.org/10.1016/j.algal.2015.03.003
Dipta, S., Schoenlaub, J., Rahaman, H, Md Uddin, A. 2022. Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses. Appl. Energy. 328:120208. DOI: https://doi.org/10.1016/j.apenergy.2022.120208
Dupraz, C., Marrou, H., Talbot ,G., Dufour, L., Nogier, A., Ferard, Y. 2011. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 36:2725-2732. DOI: https://doi.org/10.1016/j.renene.2011.03.005
El Nemr, M.K., El Gebaly, A.E., I Ghazala, A. 2021. Optimal sizing of standalone PV-wind hybrid energy system in rural area North Egypt. J. Eng. Res. 5:5.
European Commission. 2019b. Smart grids and meters. Available from: https://energy.ec.europa.eu/topics/markets-and-consumers/smart-grids-and-meters_en
European Commission. 2020a. The CAP reform’s compatibility with the Green Deal’s ambition. Available from: https://agriculture.ec.europa.eu/news/cap-reforms-compatibility-green-deals-ambition-2020-05-20_en
European Commission. 2020b. EU strategy on energy system integration. Available from: https://energy.ec.europa.eu/topics/energy-systems-integration/eu-strategy-energy-system-integration_en
European Commission. 2023a. Key policy objectives of the CAP 2023-27. Available from: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-2023-27/key-policy-objectives-cap-2023-27_en
European Commission. 2023b. Agriculture and the Green Deal - A healthy food system for people and planet. Available from: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/agriculture-and-green-deal_en
European Commission. 2023c. Commission endorses positive preliminary assessment of Italy’s request for €16.5 billion disbursement under the Recovery and Resilience Facility. Available from: https://ec.europa.eu/commission/presscorner/detail/en/ip_23_6102
FAO. 2021. The Future and Food Agriculture Report 2020-2021. Available from: https://www.fao.org/global-perspectives-studies/fofa/en/
Farthing, A, Rosenlieb, E., Steward, D., Reber, T., Njobvu, C., Moy,o C. 2023. Quantifying agricultural productive use of energy load in Sub-Saharan Africa and its impact on microgrid configurations and costs. Appl. Energy 343:121131. DOI: https://doi.org/10.1016/j.apenergy.2023.121131
Fernández, E.F., Villar-Fernández, A., Montes-Romero, J., Ruiz-Torres, L., Rodrigo, P.M., Manzaneda, A.J., Almonacid. F. 2022. Global energy assessment of the potential of photovoltaics for greenhouse farming. Appl. Energy 309:118474. DOI: https://doi.org/10.1016/j.apenergy.2021.118474
Gholami, M., Barbaresi, A., Tassinari, P., Bovo, M., Torreggiani, D., 2020. A comparison of energy and thermal performance of rooftop greenhouses and green roofs in Mediterranean climate: A hygrothermal assessment in WUFI. Energies (Basel) 13:2030. DOI: https://doi.org/10.3390/en13082030
Gilbert, N. 2012. One-third of our greenhouse gas emissions come from agriculture. Nature Avialable from: https://www.nature.com/articles/nature.2012.11708 DOI: https://doi.org/10.1038/nature.2012.11708
Giri, N.C., Mohanty, R.C. 2022. Agrivoltaic system: Experimental analysis for enhancing land productivity and revenue of farmers. Energy Sustain. Dev.70:54-61. DOI: https://doi.org/10.1016/j.esd.2022.07.003
Gonocruz, R.A., Uchiyama, S., Yoshida, Y. 2022. Modeling of large-scale integration of agrivoltaic systems: Impact on the Japanese power grid. J. Clean. Prod. 363:132545. DOI: https://doi.org/10.1016/j.jclepro.2022.132545
Gorjian, S., Bousi, E., Özdemir, Ö.E., Trommsdorff, M., Kumar, N M., Anand, A., et al. 2022. Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. Renew. Sustain. Energ. Rev. 158:112126. DOI: https://doi.org/10.1016/j.rser.2022.112126
Guerrero Hernández, A.S,. Ramos de Arruda, L.V. 2022. Technical–economic potential of agrivoltaic for the production of clean energy and industrial cassava in the Colombian intertropical zone. Environ. Qual. Manage. 31:267-81. DOI: https://doi.org/10.1002/tqem.21778
El Hammoumi, Chtita S., Motahhir S., El Ghzizal A. 2022. Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels. Energy Rep. 8:11992-12010. DOI: https://doi.org/10.1016/j.egyr.2022.09.054
Handler, R., Pearce, J.M. 2022. Greener sheep: Life cycle analysis of integrated sheep agrivoltaic systems. Clean. Energy Syst. 3:100036. DOI: https://doi.org/10.1016/j.cles.2022.100036
Hassanien, R.H.E., Li, M., Yin, F. 2018. The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production. Renew. Energy 121:377-388. DOI: https://doi.org/10.1016/j.renene.2018.01.044
Havrysh, V., Kalinichenko, A., Szafranek, E., Hruban, V. 2022. Agricultural land: crop production or photovoltaic power plants. Sustainability (Basel) 14:5099. DOI: https://doi.org/10.3390/su14095099
Huang, G., Tang, Y., Chen, X., Chen, M., Jiang, Y. 2023. A comprehensive review of floating solar plants and potentials for offshore applications. J. Mar. Sci. Eng. 11:2064. DOI: https://doi.org/10.3390/jmse11112064
Ibrahim, I.D., Hamam, Y., Alayli, Y., Jamiru, T., Sadiku, E.R., Kupolati, W.K., et al. 2021. A review on Africa energy supply through renewable energy production: Nigeria, Cameroon, Ghana and South Africa as a case study’, Energy Strategy Reviews. Elsevier Ltd. Available at: https://doi.org/10.1016/j.esr.2021.100740. DOI: https://doi.org/10.1016/j.esr.2021.100740
Jilani, Md.N. H., Yadav S., Hachem-Vermette C., Panda S.K., Tiwari G.N., Nayak S. 2023. Design and performance evaluation of a greenhouse integrated Thin-Film Photovoltaic system and an earth air heat exchanger. Appl. Therm. Eng. 231:120856. DOI: https://doi.org/10.1016/j.applthermaleng.2023.120856
Jing, R., He, Y., He, Y., He, J., Liu, Y., Yang, S. 2022a. Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China. Renew. Energy 194:1048-1059. A DOI: https://doi.org/10.1016/j.renene.2022.05.163
Jing, R., Liu, J., Zhang, H., Zhong, F., Liu, Y., Lin, J. 2022b. Unlock the hidden potential of urban rooftop agrivoltaics energy- food-nexus. Energy 256:124626. DOI: https://doi.org/10.1016/j.energy.2022.124626
Junedi, M.M., Ludin, N.A., Hamid, N.H., Kathleen, P.R., Hasila, J., Ahmad Affandi N.A. 2022. Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems. Renew. Sust. Energ. Rev. 168:112799. DOI: https://doi.org/10.1016/j.rser.2022.112799
Kaschuk, J.J., Al Haj, Y., Rojas, O.J., Miettunen, K., Abitbol, T., Vapaavuori, J. 2022. Plant-based structures as an opportunity to engineer optical functions in next-generation light management. Adv. Mater. 34:e2104473. DOI: https://doi.org/10.1002/adma.202104473
Khan, Z.A., Koondhar, M.A., Tiantong, M., Khan, A., Nurgazina, Z., Tianjun, L. F., Ma F., 2022. Do chemical fertilizers, area under greenhouses, and renewable energies drive agricultural economic growth owing the targets of carbon neutrality in China? Energ. Econ. 115:106397. DOI: https://doi.org/10.1016/j.eneco.2022.106397
Kim, J.J., Kang, M., Kwak, O.K., Yoon, Y.J., Min, K.S., Chu, M.J. 2014. Fabrication and characterization of dye-sensitized solar cells for greenhouse application. Int. J. Photoenerg. 2014:376315 DOI: https://doi.org/10.1155/2014/376315
Kim, M.H., Kim, D.W., Lee, D.W., Heo J. 2023. Energy conservation performance of a solar thermal and seasonal thermal energy storage-based renewable energy convergence system for glass greenhouses. Case Stud. Therm. Eng. 44:102895. DOI: https://doi.org/10.1016/j.csite.2023.102895
Komiyama, R., Fujii, Y. 2021. Large-scale integration of offshore wind into the Japanese power grid. Sustain. Sci. 16:429-448. DOI: https://doi.org/10.1007/s11625-021-00907-0
Kumpanalaisatit, M., Jankasorn, A., Setthapun, W., Sintuya, H., Jansri, S.N. 2019. The effect of space utilization under the ground-mounted solar farm on power generation. Asian J. Appl. Res. Commun. Dev. Empower. 3:14-16. DOI: https://doi.org/10.29165/ajarcde.v3i1.15
Kumpanalaisatit, M., Setthapun, W., Sintuya, H., Pattiya, A., Jansri, S.N. 2022. Current status of agrivoltaic systems and their benefits to energy, food, environment, economy, and society. Sustain. Prod. Consum. 33:952-963. DOI: https://doi.org/10.1016/j.spc.2022.08.013
Lau, G.P., Tsao, H.N., Zakeeruddin, S.M., Grätzel, M., Dyson, P.J. 2014. Highly stable dye-sensitized solar cells based on novel 1, 2, 3-triazolium ionic liquids. ACS Appl. Mater. Interfaces 6:13571-13577. DOI: https://doi.org/10.1021/am502838u
Ledari, M.B., Saboohi, Y., Azamian, S. 2023. Water- food- energy- ecosystem nexus model development: Resource scarcity and regional development. Energy Nexus 10:100207. DOI: https://doi.org/10.1016/j.nexus.2023.100207
Lee, S., Lee, J.H., Jeong, Y., Kim, D., Seo, B.H., Seo, Y.J., et al. 2023. Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment. Appl. Energ. 341:121130. DOI: https://doi.org/10.1016/j.apenergy.2023.121130
Lima, M.A., Mendes, L.F.R., Mothé, G.A., Linhares, F.G., De Castro, M.P.P., Da Silva, M.G., Sthel, M.S. 2020. Renewable energy in reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in Brazil. Environ. Dev. 33:100504. DOI: https://doi.org/10.1016/j.envdev.2020.100504
Lin, Y. 2020 Transparent, lightweight, high performance polymer films and their composites. Degree Diss., Queen Mmary University of London.
Luqman, M., Mahmood, F., Al-Ansari, T. 2023. Supporting sustainable global food security through a novel decentralised offshore floating greenhouse. Energ. Convers. Manage. 277:116577. DOI: https://doi.org/10.1016/j.enconman.2022.116577
Ma, J., Yuan, X. 2023. Techno-economic optimization of hybrid solar system with energy storage for increasing the energy independence in green buildings. J. Energ. Stor. 61:106642. DOI: https://doi.org/10.1016/j.est.2023.106642
Ma, Q., Zhang, Y., Wu, G., Yang, Q., Yuan, Y., Cheng, R., et al. 2022. Photovoltaic/spectrum performance analysis of a multifunctional solid spectral splitting covering for passive solar greenhouse roof. Energ. Convers. Manage. 251:114955. DOI: https://doi.org/10.1016/j.enconman.2021.114955
Maia, A.S.C., de Andrade Culhari, E., de França Carvalho Fonsêca V., Milan H.F.M., Gebremedhin, K.G. 2020. Photovoltaic panels as shading resources for livestock. J. Clean. Prod. 258:120551. DOI: https://doi.org/10.1016/j.jclepro.2020.120551
Marocco, P., Novo, R., Lanzini, A., Mattiazzo, G., Santarelli, M. 2023. Towards 100% renewable energy systems: the role of hydrogen and batteries. J. Energ. Stor. 57:106306. DOI: https://doi.org/10.1016/j.est.2022.106306
Marucci, A., Monarca, D., Cecchini, M., Colantoni, A., Manzo, A., Cappuccini, A. 2012. The semitransparent photovoltaic films for Mediterranean greenhouse: a new sustainable technology. Math. Probl. Eng. 2012:451934. DOI: https://doi.org/10.1155/2012/451934
Marucci, A., Zambon, I., Colantoni, A., Monarca, D. 2018. A combination of agricultural and energy purposes: Evaluation of a prototype of photovoltaic greenhouse tunnel. Renew. Sustain. Energ. Rev. 82:1178-1186. DOI: https://doi.org/10.1016/j.rser.2017.09.029
Mgomezulu, W.R., Machira, K., Edriss, A.K., Pangapanga-Phiri, I. 2023. Modelling farmers’ adoption decisions of sustainable agricultural practices under varying agro-ecological conditions: A new perspective. Innov. Green Dev. 2:100036. DOI: https://doi.org/10.1016/j.igd.2023.100036
Mishra, S., Harish, V.S.K.V., Saini, G. 2023b. Developing design topologies and strategies for the integration of floating solar, hydro, and pumped hydro storage system. Sustain. Cities Soc. 95:104609. DOI: https://doi.org/10.1016/j.scs.2023.104609
Mishra, S., Saini, G., Chauhan, A., Upadhyay, S., Balakrishnan, D. 2023a. Optimal sizing and assessment of grid-tied hybrid renewable energy system for electrification of rural site. Renew. Energy Focus 44:259-276. DOI: https://doi.org/10.1016/j.ref.2022.12.009
Mohebi, P., Roshandel, R. 2023.Optimal design and operation of solar energy system with heat storage for agricultural greenhouse heating. Energ. Convers. Manage. X 18:100353. DOI: https://doi.org/10.1016/j.ecmx.2023.100353
Mouhib, E., Pedro, J.P., Fern, A.M., Micheli, L., Almonacid, F., Fern, E.F., 2024. Enhancing land use: Integrating bifacial PV and olive trees in agrivoltaic systems. Appl. Energ. 359:122660. DOI: https://doi.org/10.1016/j.apenergy.2024.122660
Muhammad, S., Pan, Y., Ke, X., Agha, M.H., Borah, P.S., Akhtar, M. 2023. European transition toward climate neutrality: Is renewable energy fueling energy poverty across Europe? Renew. Energy 208:181-190. DOI: https://doi.org/10.1016/j.renene.2023.03.090
Newswire [Internet]. 2022. Floating solar market to expand at CAGR of 30% during forecast period, Notes TMR Study. Available from: Https://www.prnewswire.com/news-releases/floating-solar-market-to-expand-at-cagr-of-30-during-forecast-period-notes-tmr-study-301460405.html
Parajuli, S., Bhattarai, T. N., Gorjian, S., Vithanage, M., Paudel, S R. 2023. Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal. Appl. Energ. 344:121270. DOI: https://doi.org/10.1016/j.apenergy.2023.121270
Parreño-Rodriguez, A., Ramallo-González, A.P., Chinchilla-Sánchez, M., Molina-García, A. 2023. Community energy solutions for addressing energy poverty: A local case study in Spain. Energ. Buildings 296:113418. DOI: https://doi.org/10.1016/j.enbuild.2023.113418
Pascaris, A.S., Schelly, C., Burnham, L., Pearce J.M. 2021. Integrating solar energy with agriculture: Industry perspectives on the market, community, and socio-political dimensions of agrivoltaics. Energy Res. Soc. Sci. 75:102023. DOI: https://doi.org/10.1016/j.erss.2021.102023
Peng, J., Duong, T., Zhou, X., Shen, H., Wu, Y., Mulmudi, H K., et al. 2017. Efficient indium‐doped TiOx electron transport layers for high‐performance perovskite solar cells and perovskite‐silicon tandems. Adv. Energy Mater. 7:1601768. DOI: https://doi.org/10.1002/aenm.201601768
Peng, Y., Ma, X., Wang, Y., Li, M., Gao, F., Zhou, K., Aemixay, V. 2023. Energy performance assessment of photovoltaic greenhouses in summer based on coupled optical-electrical- DOI: https://doi.org/10.1016/j.enconman.2023.117086
Quiroga, S., Suárez, C., Santos-Arteaga, F.J., Rodrigo, J.M. 2024. Do common agricultural policy subsidies matter for the market-environment trade off? An evaluation of R&D objectives and decisions across farmers. Do common agricultural policy subsidies matter for the market. J. Agr. Food Res. 5:101047. DOI: https://doi.org/10.1016/j.jafr.2024.101047
Renewable Energy Institute, Agora Energiewende. 2018. Integrating renewables into the Japanese power grid by 2030. Japan’s Commitment to Green Innovation. Available from: https://www.renewable-ei.org/pdfdownload/activities/REI_Agora_Japan_grid_study_SUMMARY_EN_WEB.pdf
Roy, S., Ghosh, B. 2017. Land utilization performance of ground mounted photovoltaic power plants: A case study. Renew. Energy 114:1238-1246. DOI: https://doi.org/10.1016/j.renene.2017.07.116
Schallenberg-Rodriguez, J., Rodrigo-Bello, J.J., Río-Gamero, B.D. 2023. Agrivoltaic: How much electricity could photovoltaic greenhouses supply? Energ. Rep. 9:5420-5431. DOI: https://doi.org/10.1016/j.egyr.2023.04.374
Seshasayee, M.S., Savage, P.E. 2020. Oil from plastic via hydrothermal liquefaction: Production and characterization. Appl. Energ. 278:115673. DOI: https://doi.org/10.1016/j.apenergy.2020.115673
Siddiqui, R., Kumar, R., Jha, G. K., Gowri, G., Morampudi, M., Rajput, P., et al. 2016. Comparison of different technologies for solar PV (photovoltaic) outdoor performance using indoor accelerated aging tests for long term reliability. Energy 107:550-561. DOI: https://doi.org/10.1016/j.energy.2016.04.054
Stallknecht, E.J., Herrera, C.K., Yang, C., King, I., Sharkey, T.D., Lunt, R.R., Runkle, E.S. 2023. Designing plant–transparent agrivoltaics. Sci. Rep. 13:1903. DOI: https://doi.org/10.1038/s41598-023-28484-5
Syed, A.M., Hachem, C. 2019. Net-zero energy design and energy sharing potential of Retail - Greenhouse complex. J. Building Engin. 24:100736. DOI: https://doi.org/10.1016/j.jobe.2019.100736
Tang, J., Ni, H., Peng, R.L., Wang, N., Zuo, L. 2023. A review on energy conversion using hybrid photovoltaic and thermoelectric systems. J. Power Sour. 562:232785. DOI: https://doi.org/10.1016/j.jpowsour.2023.232785
Temiz, M., Sinbuathong, N. ad Dincer, I. 2022. Development and assessment of a new agrivoltaic-biogas energy system for sustainable communities. Int. J. Energy Res. 46:18663-18675. DOI: https://doi.org/10.1002/er.8483
Thompson, E.P., Bombelli, E.L., Shubham, S., Watson, H., Everard, A., D’Ardes, V., et al. 2020. Tinted semi‐transparent solar panels allow concurrent production of crops and electricity on the same cropland. Adv. Energy Mater. 10:2001189. DOI: https://doi.org/10.1002/aenm.202001189
Toledo, C., Scognamiglio, A. 2021. Agrivoltaic systems design and assessment: a critical review , and a descriptive model towards a sustainable landscape vision (three-dimensional agrivoltaic patterns). Sustainability (Basel) 13:6871. DOI: https://doi.org/10.3390/su13126871
Trommsdorff, M., Kang, J., Reise, C., Schindele, S., Bopp, G., Ehmann A., et al. 2021a. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Energy Rev. 140:110694. DOI: https://doi.org/10.1016/j.rser.2020.110694
Trommsdorff, M., Vorast, M., Durga, N., Padwardhan, S. 2021b. Potential of agrivoltaics to contribute to socio-economic sustainability: A case study in Maharashtra/India. AIP Conf. Proc 2361:040001 DOI: https://doi.org/10.1063/5.0054569
United Nations. 2021. The Sustainable Development Goals Report 2021. Available from: https://unstats.un.org/sdgs/report/2021/The-Sustainable-Development-Goals-Report-2021.pdf
United Nations. 2015. United Nations Sustainable Development Summit. Available from: https://sustainabledevelopment.un.org/post2015/summit
United Nations Framework Convention on Climate Change. 2015. The Paris Agreement. Available from: https://,c.int/process-and-meetings/the-paris-agreement
Wang J., Wang, S., Zeng, B., Lu H. 2022. A novel ensemble probabilistic forecasting system for uncertainty in wind speed. Appl. Energ. 313:118796. DOI: https://doi.org/10.1016/j.apenergy.2022.118796
Wang, P., Yu, P., Huang, L., Zhang, Y. 2022. An integrated technical, economic, and environmental framework for evaluating the rooftop photovoltaic potential of old residential buildings. J. Environ. Manage. 317:115296. DOI: https://doi.org/10.1016/j.jenvman.2022.115296
Wang, W., Yuan, B., Sun, Q., Wennersten, R. 2022. Application of energy storage in integrated energy systems — A solution to fluctuation and uncertainty of renewable energy. J. Energy Stor. 52:104812. DOI: https://doi.org/10.1016/j.est.2022.104812
Widmer, J., Christ, B., Grenz, J., Norgrove, L. 2024. Agrivoltaics, a promising new tool for electricity and food production: A systematic review. Renew. Sustain. Energ. Rev. 192:114277. DOI: https://doi.org/10.1016/j.rser.2023.114277
Yoon, J., Koide, D., Ishihama, F., Kadoya, T., Nishihiro, J. 2021. Current site planning of medium to large solar power systems accelerates the loss of the remaining semi-natural and agricultural habitats. Sci. Total Environ. 779:146475. DOI: https://doi.org/10.1016/j.scitotenv.2021.146475
Yu, X., Xue, Y. 2016. Smart Grids: A cyber-physical systems perspective. P. IEEE 2361:040001.
Zeyad, M., Ahmed, S. M., Hasan, S., Mahmud, D.M. 2023. Community microgrid: an approach towards positive energy community in an urban area of Dhaka, Bangladesh. Clean Energy 7:926-939. DOI: https://doi.org/10.1093/ce/zkad027
Zhang, M., Yan, T., Wang, W., Jia, X., Wang, J., Klemeš, J.J. 2022. Energy-saving design and control strategy towards modern sustainable greenhouse: A review. Renew. Sustain. Energ. Rev. 16:112602. DOI: https://doi.org/10.1016/j.rser.2022.112602
Zhang, N., Zhou, P., Choi, Y. 2013. Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis. Energ. Policy 56:653-662. DOI: https://doi.org/10.1016/j.enpol.2013.01.033
Zhang, Y., Gauthier, L., de Halleux, D., Dansereau, B., Gosselin, A. 1996. Effect of covering materials on energy consumption and greenhouse microclimate. Agr. Forest Meteorol. 82:227-244. DOI: https://doi.org/10.1016/0168-1923(96)02332-5

How to Cite

Impallomeni, G. and Barreca, F. (2024) “Agrivoltaic systems towards the European green deal and agricultural policies: a review”, Journal of Agricultural Engineering. doi: 10.4081/jae.2024.1632.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.