Optimisation of energy consumption of a solar-electric dryer during hot air drying of tomato slices

Published: 24 July 2019
Abstract Views: 1075
PDF: 757
HTML: 157
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

High-energy demand of convective crop dryers has prompted study on optimisation of dryer energy consumption for optimal and cost effective drying operation. This paper presents response surface optimisation of energy consumption of a solar-electric dryer during hot air drying of tomato slices. Drying experiments were conducted with 1 kg batch of tomato samples using a 33 central composite design of Design Expert 7.0 Statistical Package. Three levels of air velocity (1.0, 1.5 and 2.0 ms–1), slice thickness (10, 15 and 20 mm) and air temperature (50, 60 and 70°C) were used to investigate their effects on energy consumption. A quadratic model was obtained with a high coefficient of determination (R2) of 0.9825. The model was validated using the statistical analysis of the experimental parameters and normal probability plot of the energy consumption residuals. Results obtained indicate that the process parameters had significant quadratic effects (P<0.05) on the energy consumption. The energy consumption varied between 5.42 kWh and 99.78 kWh; whereas the specific energy consumption varied between 5.53 kWhkg–1 and 150.61 kWhkg–1. The desirability index method was applied in predicting the ideal energy consumption and drying conditions for tomato slices in a solar-electric dryer. At optimum drying conditions of 1.94 ms–1 air velocity, 10.36 mm slice thickness and 68.4°C drying air temperature, the corresponding energy consumption was 5.6 8kWh for maximum desirability index of 0.989. Thermal utilisation efficiency (TUE) of the sliced tomato samples ranged between 15 ≤TUE ≤58%. The maximum TUE value was obtained at 70°C air temperature, 1.0 ms–1 air velocity and 10 mm slice thickness treatment combination, whereas the minimum TUE was obtained at 50°C air temperature, 2.0 ms–1 air velocity and 20 mm slice thickness. Recommendation and prospect for further improvement of the dryer system were stated.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

How to Cite

Nwakuba, N. R. (2019) “Optimisation of energy consumption of a solar-electric dryer during hot air drying of tomato slices”, Journal of Agricultural Engineering, 50(3), pp. 150–158. doi: 10.4081/jae.2019.876.

Similar Articles

<< < 22 23 24 25 26 27 28 29 30 31 > >> 

You may also start an advanced similarity search for this article.