LOADS INTERACTION DOMAINS METHODOLOGY FOR THE DESIGN OF STEEL GREENHOUSE STRUCTURES

Published: 31 March 2007
Abstract Views: 1402
PDF: 961
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Aim of this research is to develop a design methodology which correlates main structural design parameters, whose production is characterised by high levels of standardization, such as the height of gutter or the distance between frames, with actions on the greenhouse. The methodology, based on the use of charts and abacus, permits a clear and a direct interpretation of the structural response to design load combinations and allows the design of structural improvements with the aim of the optimization of the ratio benefits (structural strength)/costs. The study of structural interaction domains allowed a clear and a direct interpretation of the structural response to design load combinations. The diagrams highlight not only if the structure fulfils the standard requirements but also the safety levels with respect to design load combinations and allow the structural designer how to operate in order to optimize the structural response with standard requirements achieving the best ratio benefits (structural safety)/ costs. The methodology was developed basing on criteria assigned by EN13031 on two different kinds of greenhouse structures: an arched greenhouse with a film plastic covering and a duo pitched roof greenhouse cover with rigid plastic membranes. Structural interaction domains for arched greenhouse showed a better capability of the structure to resist to vertical loads then to horizontal one. Moreover, the climatic load distribution on the structure assigned by EN13031 is such that the combination of climatic actions is less dangerous for the structure then their individual application. Whilst, duo pitched roof steel greenhouse interaction domains, showed a better capability of the structure to resist to vertical loads then to horizontal one and that, in any case, the serviceability limit states analysis is more strict then the ULS one. The shape of structural domains highlighted that the combination of actions is more dangerous for the structure then the application of single loads. Charts and abacus very easy to interpret and can be used also by non technicians in order to arrange a quick and reliable estimate of the costs of the structure. For instance, it is sufficient to know characteristic values of snow loads and wind speed to evaluate what is the distance of frame of the arched greenhouse to fulfil EN13031 requirements.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

How to Cite

Castellano, S. (2007) “LOADS INTERACTION DOMAINS METHODOLOGY FOR THE DESIGN OF STEEL GREENHOUSE STRUCTURES”, Journal of Agricultural Engineering, 38(1), pp. 21–29. doi: 10.4081/jae.2007.1.21.

Similar Articles

<< < 36 37 38 39 40 41 42 43 > >> 

You may also start an advanced similarity search for this article.